Applied Microbiology and Biotechnology, Vol.76, No.2, 321-328, 2007
Production of uridine 5'-monophosphate by Corynebacterium ammoniagenes ATCC 6872 using a statistically improved biocatalytic process
Attempts were made with success to develop a two-step biocatalytic process for uridine 5'- monophosphate (UMP) production from orotic acid by Corynebacterium ammoniagenes ATCC 6872: the strain was first cultivated in a high salt mineral medium, and then cells were harvested and used as the catalyst in the UMP production reaction. Effects of cultivation and reaction conditions on UMP production were investigated. The cells exhibited the highest biocatalytic ability when cultivated in a medium containing corn steep liquor at pH 7.0 for 15 h in the exponential phase of growth. To optimize the reaction, both "one-factor-at-a-time" method and statistical method were performed. By "one-factor-at-a-time" optimization, orotic acid, glucose, phosphate ion (equimolar KH2PO4 and K2HPO4), MgCl2, Triton X-100 were shown to be the optimum components for the biocatalytic reaction. Phosphate ion and C. ammoniagenes cell were furthermore demonstrated as the most important main effects on UMP production by Plackett-Burman design, indicating that 5-phosphoribosyl-1-pyrophosphate (PRPP) synthesis was the rate-limiting step for pyrimidine nucleotides production. Optimization by a central composition design (CCD) was then performed, and up to 32 mM (10.4 g l(-1)) UMP was accumulated in 24 h from 38.5 mM (6 g l(-1)) orotic acid. The yield was threefold higher than the original UMP yield before optimization.
Keywords:Corynebacterium ammoniagenes;uridine 5'-monophosphate;biocatalytic production;statistical optimization