화학공학소재연구정보센터
Applied Surface Science, Vol.253, No.19, 7917-7921, 2007
In situ STM of pulsed laser nanostructured deposits: First stages of film formation
In the synthesis of nanostructured thin films the characterization of the growth processes plays a fundamental role for the control of the film and surface properties. Moreover when the deposition technique is based on the production and the assembling of nanoparticles/clusters the characterization of the precursor size distribution is of fundamental importance. We have designed a pulsed laser deposition (PLD) apparatus for the production of nanostructured thin films and surfaces, connected to a UHV variable temperature scanning tunneling microscope (STM). The whole system is devoted to the synthesis and in situ study of nanostructured and nanoporous functional metal and metal oxide films and surfaces. We have deposited W nanoparticles produced by a few hundreds laser pulses in order to investigate the initial mechanisms of the film growth. Different deposition conditions have been explored by controlling the laser generated plasma expansion through a background gas in the PLD chamber. STM measurements have been performed on W thin films deposited on different substrates to study both the size distribution and the aggregation of the precursors on the surface. Although substrate effects must be taken into account, the control of the background gas pressure and of the target-to-substrate distance allows to produce surfaces with different morphologies. This opens the possibility to tailor the material properties through the control of the size and deposition energy of the building nano-units. (c) 2007 Elsevier B.V. All rights reserved.