화학공학소재연구정보센터
Inorganic Chemistry, Vol.46, No.21, 8819-8824, 2007
Influence of ligand geometry on the formation of In-O chains in metal-oxide organic frameworks (MOOFs)
Three indium-oxide organic frameworks, In2O(1,3-BDC)(2), 1; In(OH)(2,6-NDC)(H2O), 2; and In(OH)(2,7-NDC)(H2O), 3 (BDC = benzene dicarboxylic acid and NDC = naphthalene dicarboxylic acid), were synthesized and characterized by thermogravimetric analysis, infrared spectroscopy, and single-crystal X-ray diffraction. Previously, we reported the structure of In(OH)(1,4-BDC)center dot(0.75H(2)BDC), 0, where the framework is built by interconnecting In-OH-In chains with the BDC anions to form large diamond-shaped one-dimensional channels filled with guest molecules. Compounds 0-3 all contain In-O(H) chains, but the coordination and geometry depend on the nature of the dicarboxylate ligand. Compound 0 contains In-O octahedral centers that connect to form a single trans octahedral chain, while in compound 1, they connect to form a more complex double chain of octahedra. Both compounds 2 and 3 contain chains of connected pentagonal bipyramidal InO6(OH2) units. In 2, these units share trans vertices that are crosslinked by chelating 2,6-NDC anions, whereas in compound 3, cis vertices are shared to form chains that are linked by the 2,7-NDC anions.