- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.19, No.1, 127-132, January, 1995
Polypyrrole을 이용한 Photoelectrochemical Cell의 광전기화학적 특성에 관한 연구
The Photoelectrichemical Characteristics of a Photoelectrochemical Cell Using Polypyrrole
초록
무기반도체인 n-type Si위에 전기화학적인 방법으로 백금과 유기고분자인 p-type polypyrrole을 차례로 중합시킴으써 n-Si | Pt | Polypyrrole 이종접합을 형성하였다. 0.4 M KI + 0.02 M I2 + 0.5 M KCI 수용액에서 n-Si | Pt | Polypyrrole 이종접합을 작업전극으로, 백금판을 보조전극으로 하여 photoelectrochemical cell(PEC)을 형성하고 이에 대한 정류 효과, 광전지효과, 그리고 시간에 따른 안정성을 조사하였다. 광전지효과 실험결과, short circuit전류 밀도는 2.9 mA/cm2, open circuit전압은 320mV로 측정되었고 이로부터 fill factor는 0.30, 출력 효율은 0.46%로 계산되었다. 동일한 수용액에서 형성된 n-Si | I-(aq), I3-(aq) | Pt 이나 n-Si | (Pt) | I-(aq), | I3-(aq) | Pt PEC와 비교하였을 때 n-Si | (Pt) | PPy | I-(aq), I3-(aq) | Pt PEC가 시간에 대해 상대적으로 더 안정된 결과를 보여주었다.
A photoelectrochemical cell (PEC) was made by depositing platinum and polypyrrole film electrochemically in sequence on an n-Si substrate. The photoelectrochemical generation of thin polypyrrole films on the Si surface was performed with a tungsten-halogen lamp. The photovoltaic effect under illumination of 60mW/cm2 tungsten-halogen light, and the rectification effect of the dark current as well as the long-term stability were investigated in n-Si | (Pt) | PPy | I-(aq), I3-(aq) | Pt PEC with an iodine/triiodide electrolyte. The maximum short circuit current density was 2.9 mA/cm2, and the maximum open circuit voltage was 320 mV. The calculated power conversion efficiency was 0.46% and the corresponding fill factor was 0.30. Comparing with the n-Si | I-(aq), I3-(aq) | Pt or the n-Si | (Pt) | PPy | I-(aq), I3-(aq) | Pt PEC, the n-Si | (Pt) | I-(aq), I3-(aq) | Pt PEC showed better long-term stability as a solar cell.
- Butler MA, Ginley DS, J. Mater. Sci., 15, 1 (1980)
- Nakato Y, Ohnishi T, Tsubomura H, Chem. Lett., 883 (1975)
- Wagner S, Shay J, Appl. Phys. Lett., 31, 446 (1977)
- Nakatani K, Tsubomura H, Bull. Chem. Soc. Jpn., 50, 783 (1977)
- Singh P, Singh R, Rajeshwar K, Dubow J, J. Electrochem. Soc., 128, 1145 (1981)
- Skotheim J, Lundsrtom I, Prejza J, J. Electrochem. Soc., 128, 1625 (1981)
- Garnier F, Horowitz G, Synth. Met., 18, 693 (1987)
- Noufi R, Tench D, Warren LF, J. Electrochem. Soc., 127, 2310 (1980)
- Skotheim T, Petterson LG, Inganas O, Lundstrom I, J. Electrochem. Soc., 129, 1737 (1982)
- Gardini GP, Adv. Heterocyclic Chem., 15, 67 (1973)
- Kanazawa KK, Diaz AF, Gill WD, Grant PM, Street GB, Gardini GP, Kwak JF, Synth. Met., 1, 329 (1980)
- Diaz AF, Kanazawa KK, Gardini GP, J. Chem. Soc.-Chem. Commun., 635 (1979)
- Street GB, Clarke TC, Krounbi M, Kanazawa KK, LEe V, Pflunger P, Scott JC, Weiser G, Mol. Cryst. Liq. Cryst., 83, 253 (1982)
- Diaz AF, Martinez A, Kanazawa KK, Salmon M, J. Electroanal. Chem., 130, 181 (1981)
- Pfluger P, Street GB, J. Chem. Phys., 80, 544 (1984)
- Clarke TC, Scott JC, Street GB, IBM J. Res. Dev., 27, 313 (1983)
- Pflunger P, Krounbi MT, Street GB, Weiser G, J. Chem. Phys., 78, 3212 (1983)
- Horowitz G, Garnier F, J. Electrochem. Soc., 132, 634 (1985)
- Lakhami AA, J. Appl. Phys., 56, 1888 (1984)
- Perrin DD, Armarego WLF, Perrin DR, "Purification of Laboratory Chemicals," 2nd ed., p. 406, Pergamon Press (1980)
- Sze SM, "Physics of Semiconductor Devices," 2nd ed., John Wiley & Sons, Inc. (1981)
- Kissinger PT, "Laboratory Techniques in Electroanalytical Chemistry," eds. by P.T. Kissinger and W.R. Heineman, p. 36, Marcel Dekker Inc., New York and Basel (1984)