화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.1, 127-132, January, 1995
Polypyrrole을 이용한 Photoelectrochemical Cell의 광전기화학적 특성에 관한 연구
The Photoelectrichemical Characteristics of a Photoelectrochemical Cell Using Polypyrrole
초록
무기반도체인 n-type Si위에 전기화학적인 방법으로 백금과 유기고분자인 p-type polypyrrole을 차례로 중합시킴으써 n-Si | Pt | Polypyrrole 이종접합을 형성하였다. 0.4 M KI + 0.02 M I2 + 0.5 M KCI 수용액에서 n-Si | Pt | Polypyrrole 이종접합을 작업전극으로, 백금판을 보조전극으로 하여 photoelectrochemical cell(PEC)을 형성하고 이에 대한 정류 효과, 광전지효과, 그리고 시간에 따른 안정성을 조사하였다. 광전지효과 실험결과, short circuit전류 밀도는 2.9 mA/cm2, open circuit전압은 320mV로 측정되었고 이로부터 fill factor는 0.30, 출력 효율은 0.46%로 계산되었다. 동일한 수용액에서 형성된 n-Si | I-(aq), I3-(aq) | Pt 이나 n-Si | (Pt) | I-(aq), | I3-(aq) | Pt PEC와 비교하였을 때 n-Si | (Pt) | PPy | I-(aq), I3-(aq) | Pt PEC가 시간에 대해 상대적으로 더 안정된 결과를 보여주었다.
A photoelectrochemical cell (PEC) was made by depositing platinum and polypyrrole film electrochemically in sequence on an n-Si substrate. The photoelectrochemical generation of thin polypyrrole films on the Si surface was performed with a tungsten-halogen lamp. The photovoltaic effect under illumination of 60mW/cm2 tungsten-halogen light, and the rectification effect of the dark current as well as the long-term stability were investigated in n-Si | (Pt) | PPy | I-(aq), I3-(aq) | Pt PEC with an iodine/triiodide electrolyte. The maximum short circuit current density was 2.9 mA/cm2, and the maximum open circuit voltage was 320 mV. The calculated power conversion efficiency was 0.46% and the corresponding fill factor was 0.30. Comparing with the n-Si | I-(aq), I3-(aq) | Pt or the n-Si | (Pt) | PPy | I-(aq), I3-(aq) | Pt PEC, the n-Si | (Pt) | I-(aq), I3-(aq) | Pt PEC showed better long-term stability as a solar cell.
  1. Butler MA, Ginley DS, J. Mater. Sci., 15, 1 (1980) 
  2. Nakato Y, Ohnishi T, Tsubomura H, Chem. Lett., 883 (1975) 
  3. Wagner S, Shay J, Appl. Phys. Lett., 31, 446 (1977) 
  4. Nakatani K, Tsubomura H, Bull. Chem. Soc. Jpn., 50, 783 (1977) 
  5. Singh P, Singh R, Rajeshwar K, Dubow J, J. Electrochem. Soc., 128, 1145 (1981) 
  6. Skotheim J, Lundsrtom I, Prejza J, J. Electrochem. Soc., 128, 1625 (1981) 
  7. Garnier F, Horowitz G, Synth. Met., 18, 693 (1987) 
  8. Noufi R, Tench D, Warren LF, J. Electrochem. Soc., 127, 2310 (1980) 
  9. Skotheim T, Petterson LG, Inganas O, Lundstrom I, J. Electrochem. Soc., 129, 1737 (1982) 
  10. Gardini GP, Adv. Heterocyclic Chem., 15, 67 (1973)
  11. Kanazawa KK, Diaz AF, Gill WD, Grant PM, Street GB, Gardini GP, Kwak JF, Synth. Met., 1, 329 (1980) 
  12. Diaz AF, Kanazawa KK, Gardini GP, J. Chem. Soc.-Chem. Commun., 635 (1979)
  13. Street GB, Clarke TC, Krounbi M, Kanazawa KK, LEe V, Pflunger P, Scott JC, Weiser G, Mol. Cryst. Liq. Cryst., 83, 253 (1982)
  14. Diaz AF, Martinez A, Kanazawa KK, Salmon M, J. Electroanal. Chem., 130, 181 (1981)
  15. Pfluger P, Street GB, J. Chem. Phys., 80, 544 (1984) 
  16. Clarke TC, Scott JC, Street GB, IBM J. Res. Dev., 27, 313 (1983)
  17. Pflunger P, Krounbi MT, Street GB, Weiser G, J. Chem. Phys., 78, 3212 (1983) 
  18. Horowitz G, Garnier F, J. Electrochem. Soc., 132, 634 (1985) 
  19. Lakhami AA, J. Appl. Phys., 56, 1888 (1984) 
  20. Perrin DD, Armarego WLF, Perrin DR, "Purification of Laboratory Chemicals," 2nd ed., p. 406, Pergamon Press (1980)
  21. Sze SM, "Physics of Semiconductor Devices," 2nd ed., John Wiley & Sons, Inc. (1981)
  22. Kissinger PT, "Laboratory Techniques in Electroanalytical Chemistry," eds. by P.T. Kissinger and W.R. Heineman, p. 36, Marcel Dekker Inc., New York and Basel (1984)