화학공학소재연구정보센터
Electrophoresis, Vol.28, No.12, 2080-2094, 2007
Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow
With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through a comparison of protein identifications using direct MALDI-TOF/ TOF and LC-ESI-MS/MS analyses of 2-D gel separated proteins from cauliflower florets, we have developed an integrated approach to improve the accuracy and reliability of comparative 2-D electrophoresis. From 46 spots of interest, we identified 51 proteins by MALDI-TOF/TOF analysis and 108 proteins by LC-ESI-MS/MS. The results indicate that 75% of the analyzed spots contained multiple proteins. A comparison of hit rank for protein identifications showed that 37 out of43 spots identified by MALDI matched the top-ranked hit from the ESI-MS/MS. By using the exponentially modified protein abundance index (emPAI) to determine the abundance of the individual component proteins for the spots containing multiple proteins, we found that the top-hit proteins from 40 out of43 spots identified by MALDI matched the most abundant proteins determined by LC-MS/MS. Furthermore, our 2-D-GeLC-MS/MS results show that the top-hit proteins in 44 identified spots contributed on average 81% of the spots' staining intensity. This is the first quantitative measurement of the average rate of false assignment for direct MALDI analysis of 2-D gel spots using a new integrated workflow (2-D gel imaging, "2-D GeLC-MS/MS", and emPAI analysis). Here, the new approach is proposed as an alternative to traditional gel-based quantitative proteomics studies.