화학공학소재연구정보센터
Electrophoresis, Vol.28, No.16, 2912-2919, 2007
Fabrication of a monolithic sampling probe system for automated and continuous sample introduction in microchip-based CE
A fabrication process for producing monolithic sampling probes on glass chips, with tip diameters of a few hundred micrometers was developed, using simple tools including a glass cutter and a bench drill. Microfluidic chips with probes fabricated by this approach were coupled to a linearly moving slotted-vial array sample presentation system for performing continuous sample introduction in the chip-based CE system. On-chip horizontal tubular reservoirs containing working electrolyte and waste were used to maintain a stable hydrostatic pressure in the chip channels during prolonged working periods. The performance of the system was demonstrated in the separation of FITC-labeled amino acids with LIF detection, by continuously introducing a train of different samples without interruption. Throughputs of 30-60/h were achieved with < 1.0% carry-over and reproducibilities in peak height of 3.6, 3.3, and 3.5% RSD for arginine, FITC, and phenylalanine, respectively (n = 11). Continuous analysis of a mixture of FITC-labeled amino acids for 2 h, involving 60 analytical cycles, yielded an RSD of 7.5 and 6.8% for arginine and FITC (n = 60), respectively. An extremely low sample consumption of 30 nL for each analysis was obtained. Separation efficiencies in plate numbers were in the range of 0.8-2 x 10(5)/m. In addition to the application in sample introduction, the sample/reagent introduction system was also used to produce working electrolyte gradients during a CE separation to improve the separation efficiency. Comparing with isocratic electrophoresis separation, gradient CE demonstrated better separation efficiencies for a mixture of FITC-labeled amino acids.