화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.78, No.1, 55-65, 2008
Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E-coli
Escherichia coli BL21, expressing a quintuple mutant of P450(BM-3), oxyfunctionalizes alpha-pinene in an NADPH-dependent reaction to alpha-pinene oxide, verbenol, and myrtenol. We optimized the whole-cell biocatalyst by integrating a recombinant intracellular NADPH regeneration system through co-expression of a glucose facilitator from Zymomonas mobilis for uptake of unphosphorylated glucose and a NADP(+)-dependent glucose dehydrogenase from Bacillus megaterium that oxidizes glucose to gluconolactone. The engineered strain showed a nine times higher initial alpha-pinene oxide formation rate corresponding to a sixfold higher yield of 20 mg g(-1) cell dry weight after 1.5 h. The initial total product formation rate was 1,000 mu mol h(-1) mu mol(-1) P450 leading to a total of 32 mg oxidized products per gram cell of dry weight after 1.5 h. The physiological functioning of the heterologous cofactor regeneration system was illustrated by a sevenfold increased alpha-pinene oxide yield in the presence of glucose compared to glucose-free conditions.