화학공학소재연구정보센터
Applied Surface Science, Vol.254, No.2, 480-489, 2007
Characterization of thin Zn-Ni alloy coatings electrodeposited on low carbon steel
The characteristics of initial layer formation in alkaline bath for Zn-Ni (12-15%) alloy electrodeposition on low carbon steel plates are detected in a nanometric thickness range by electron probe microanalysis (EPMA), with both bulk sample and thin film on substrate correction procedure, glow discharge optical emission spectroscopy (GDOES) and gracing incidence X-ray diffraction (GIXRD). The Zn-Ni coatings were elaborated using either intensiostatic or potentiostatic mode. A preferential deposition of Ni, in the initial thin layer, is detected by these analyses; according to EPMA and GDOES measurements, a layer rich in nickel at the interface substrate/deposit is observed (90 wt.% Ni) and approved by GIXRD; the thin layer of Ni formed in the first moments of electrolysis greatly inhibits the Zn deposition. The initial layer depends upon the relative ease of hydrogen and metal discharge and on the different substrate surfaces involved. The electrodeposition of zinc-nickel alloys in the first stage is a normal phenomenon of codeposition, whereby nickel - the more noble metal - is deposited preferentially. (c) 2007 Elsevier B.V. All rights reserved.