Applied Surface Science, Vol.254, No.4, 1232-1235, 2007
Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition
Pulsed laser deposition with a Nd:YAG laser was used to grow thin films from a pre-synthesized Ti3SiC2 MAX-phase formulated ablation target on oxidized Si(1 0 0) and MgO(1 0 0) substrates. The depositions were carried out in a substrate temperature range from 300 to 900 K, and the pressure in the deposition chamber ranged from vacuum (10(-5) Pa) to 0.05 Pa Argon background pressure. The properties of the films have been investigated by Rutherford backscattering spectrometry for film thickness and stoichiometric composition and X-ray diffraction for the crystallinity of the films. The silicon content of the films varied with the energy density of the laser beam. To suppress especially the silicon re-sputtering from the substrate, the energy of the incoming particles must be below a threshold of 20 eV. Therefore, the energy density of the laser beam must not be too high. At constant deposition energy density the film thickness depends strongly on the background pressure. The X-ray diffraction measurements show patterns that are typical of amorphous films, i.e. no Ti3SiC2 related reflections were found. Only a very weak TiC(2 0 0) reflection was seen, indicating the presence of a small amount of crystalline TiC. (C) 2007 Elsevier B.V. All rights reserved.