Polymer(Korea), Vol.19, No.4, 478-487, July, 1995
Temperature Rising Elusion Fractionation법에 의하여 분리된 초저밀도 폴리에털렌의 열적특성
Thermal Properties of Fractionated Very Low Density Polyethylene by Temperature Rising Elusion Fractionation
초록
Short chain branch (SCB)의 조성비에 따른 초저밀도 폴리에틸렌 (VLDPE)의 물리적 특성을 조사하기 위하여 용리온도별로 분리하였다. 새로운 TREF (temperature rising elusion fractionation)법에 의하여 분리한 VLDPE의 구조적 특성은 13C-NMR과 FT-IR, 열적특성은 DSC를 이용하여 조사하였다. 각 용리온도에 따라 분리된 VLDPE에서 주쇄에 대한 SCB의 조성비는 용리온도가 증가함에 따라 기존의 보고와 같이 불규칙적으로 감소하였다. 고온에서 용리된 VLDPE는 기존의 보고와 다르게 high temperature endotherm (HTE)과 low temperature endotherm(LTE)을 동시에 나타내었다. 또한 용리온도가 증가함에 따라 SCB의 조성비가 감소하며, HTE, LTE 그리고 결정화 온도가 증가하였다. 한편 형태학적 특성에서 VLDPE는 미세한 상분리가 관찰 되었으며, 이것은 용리온도에 무관하였다. 또한 저온에서 분리된 VLDPE의 경우 poly(1-butene)으로 생각되는 겔이 관찰되었다.
Very low density polyethylene(VLDPE) was fractionated with elusion temperature by temperature rising elution fractionation(TREF). Structural and thermal properties of the fractionated VLDPE were investigated by 13C-NMR, FT-IR, and DSC. The fractionated VLDPE with elusion temperature showed two endotherms, j. e., higher temperature endotherm (HTE) and lower temperature endotherm (LTE), and they continuously increased with increasing elusion temperature. Crystallization behavior of the fractionated VLDPE depended upon branch content in VLDPE. Melting and crystallization temperatures increased with decrease of SCB content. Branch content decreased with increasing elusion temperature. Phase separation was shown in fractionated VLDPE regardless of elusion temperature. Micro-gel was shown in fractionated VLDPE at low temperature by TREF, which it assumes to be poly(1-butane) In VLDPE.
- Mukherjee AK, Dhara SK, Sharma PK, Pop. Plast., 30, 15 (1985)
- Ratra CP, Pop. Plast., 30, 34 (1985)
- Lee CD, Peat IR, Wild L, Fernando PL, Plast. Eng., 44, 43 (1988)
- Rigby D, Roe RJ, Macromolecules, 17, 1778 (1984)
- Platzer N, Ind. Eng. Chem., 22, 158 (1983)
- Szekely G, Siklos P, Magy. Kem. Lapja, 38, 449 (1984)
- Usami T, Gotoh Y, Takayama S, Macromolecules, 22, 2722 (1989)
- Kimura K, Yuasa S, Maru Y, Polymer, 25, 441 (1984)
- Cudby ME, Golden Jubilee Conference, June, London, The Plastic and Rubber Institute, New York, 9 (1983)
- Solti A, Hummel DO, Simak P, Makromol. Chem. Macromol. Symp., 5, 105 (1986)
- Ray GJ, Spanswick J, Knox JR, Serres C, Macromolecules, 14, 1323 (1981)
- Ray GJ, Macromolecules, 15, 351 (1982)
- Housaki T, Makromol. Chem., 189, 525 (1988)
- Usami T, Takayama S, Polym. J., 16, 731 (1984)
- Nakano S, Goto Y, J. Appl. Polym. Sci., 26, 4217 (1981)
- Hsieh ET, Randall JC, Macromolecules, 15, 1402 (1982)
- Mathot VF, Pijpers MJ, Thermochim. Acta, 93, 3 (1985)
- Randall JC, ACS Symposium Series, ACS, Washington, 247 (1984)
- Kakugo M, Naito Y, Mizunuma K, Miyatake T, Macromolecules, 15, 1150 (1982)
- Wild L, Ryle TR, Knobeloch DC, Peat IR, J. Polym. Sci. B: Polym. Phys., 20, 441 (1982)
- Cady LD, Plast. Eng., 43, 25 (1987)
- Wild L, Ryle TR, Knobeloch DC, Polym. Prepr., 23, 133 (1982)
- Willbourn AH, J. Polym. Sci., 34, 569 (1959)
- Constantin D, Hert M, Machon JP, Makromol. Chem., 179, 1581 (1978)
- Springer H, Hengse A, Hohne J, Schich A, Hinrichsen G, Prog. Colloid Polym. Sci., 72, 101 (1986)
- Wilfong DL, J. Polym. Sci. B: Polym. Phys., 28, 861 (1990)
- Hosoda S, Kojima K, Furuta M, Macromol. Chem., 187, 1501 (1986)
- Wunderlich BW, Trans. Faraday Soc., 68, 239 (1979)
- Gedde UW, Janson JF, Polymer, 24, 1521 (1983)