화학공학소재연구정보센터
Langmuir, Vol.23, No.15, 8142-8149, 2007
Protein-directed assembly of binary monolayers at the interface and surface patterns of protein on the monolayers
Ferritin-directed assembly of binary monolayers of zwitterionic dipalmitoylphosphatidylcholine and cationic dioctadecyldimethylammonium bromide (DOMA) at the interface and surface patterns of ferritin on the monolayers have been investigated using a combination of infrared reflection absorption spectroscopy, surface plasmon resonance, and atomic force microscopy. Ferritin binding to the binary monolayers at the air-water interface at the surface pressure 30 mN/m, primarily driven by the electrostatic interaction, gives rise to a change in tilt angle of hydrocarbon chains from 15 degrees +/- 1 degrees to 10 degrees +/- 1 degrees with respect to the normal of the monolayer at the mole fraction of DOMA (X-DOMA) of 0.1. The chains at X-DOMA = 0.3 are oriented vertical to the water surface before and after protein binding. A new mechanism for protein binding to the binary monolayers is proposed. The secondary structures of the adsorbed ferritin are prevented from changing to some extent due to the existence of the monolayers. The amounts of the bound protein on the monolayers at the air-water interface are increased in comparison with those on the preimmobilized monolayers at low X-DOMA. The increased amounts and different patterns of the adsorbed protein at the monolayers are mostly attributed to the formation of multiple binding sites available for ferritin, which is due to the lateral reorganization of the lipid components in the monolayers induced by the protein in the subphase. The created multiple binding sites on the monolayer surfaces through the protein-directed assembly can be preserved for subsequent protein binding.