화학공학소재연구정보센터
Current Microbiology, Vol.56, No.1, 80-83, 2008
Evaluation of LightCycler as a platform for nucleic acid sequence-based amplification (NASBA) in real-time detection of enteroviruses
The nucleic acid sequence-based amplification (NASBA) assay has been demonstrated to be more sensitive for detection of enteroviruses (EV) than RT-PCR. Many laboratories, however, do not have a dedicated instrument for the NASBA assay. This study aimed to evaluate the use of the Roche LightCycler as a platform for performing the NASBA assay for detection of EV. A diverse subgenera of EV were used to assess the specificity of the NASBA assay, including coxsackie, echovirus, poliovirus, and other enteroviruses together with related and unrelated viruses, including rhinovirus, respiratory syncytial virus, herpes simplex virus, adenovirus, influenza virus A, and cytomegalovirus. All species of EV tested were successfully detected using NASBA and no cross reactivity with other viruses was observed. Using serial dilutions of EV to assess sensitivity, the NASBA assay was compared to an in-house EV RT-PCR assay. The NASBA assay demonstrated a higher level of sensitivity. Fifty-one clinical samples positive for EV by viral culture were also evaluated. All NASBA results obtained were concordant with viral culture results. This study confirmed that the NASBA assay for the detection of EV could be readily performed on the LightCycler and easily incorporated into the workflow of a diagnostic laboratory equipped with a LightCycler, thereby eliminating the need for additional instrumentation.