Chemical Engineering Science, Vol.62, No.23, 6784-6793, 2007
Modeling of a packed-bed electrochemical reactor for producing glyoxylic acid from oxalic acid
A two-dimensional reactor model was established for a packed-bed electrochemical reactor with cooled cathode (PERCC) for producing glyoxylic acid from oxalic acid based on the system's reaction kinetics, mass conservation equation, and the equation of charge conservation in terms of solution-cathode potential to describe the distributions of glyoxylic acid concentration and electrolyte potential in the cathode compartment of the PERCC. The equation for a circulating mixer was also presented to account for the accumulation of glyoxylic acid in the catholyte of a batch electroreduction process. Using the orthogonal collocation approach, the partial differential equations of the model could be converted into sets of algebraic equations and be numerically solved. The effects of operating temperature, conductivity of catholyte, operating cathode potential, and volumetric flow rate of the catholyte on the current efficiency and concentration of glyoxylic acid were simulated and discussed, with emphasis on the current densities generated from main and side reactions. The model was used in a batch operation process and a continuous operation process, with the predicted results being generally in good agreement with the experimental data for both the cases. (C) 2007 Published by Elsevier Ltd.
Keywords:glyoxylic acid;packed bed;electrochemical reactor;cooled cathode;mathematical modeling;continuous operation