화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.2, 251-259, March, 1996
반응 고분자블렌드의 구조와 성질에 영향을 미치는 인자에 관한 연구Ⅰ.
Factors Affecting Morphology and Property of Polymer Blend Via Reactive Process Ⅰ.
초록
나일론-6/ABS/반응성 상용화제 계를 이용하여 나일론-6와 ABS의 점도비, 상용화제의 함량 조성에 따른 모폴로지와 열적성질의 변화에 관하여 살펴보았다. 나일론-6/ABS의 점도비는 0.3∼2.0 범위를 나타내었다. 나일론-6/ABS의 중량비가 2 : 8인 조건에서 나일론-6는 분산상을 이루었으며, 상용화제의 첨가는 급격한 분산상 크기의 감소를 초래하였다. 분산상 크기는 상용화제의 첨가와 상관없이 나일론-6/ABS 점도비가 약 0.75일때 가장 작은 크기를 나타내었다. 분산상의 크기는 상용화제의 함량이 증가함에 따라 감소하며 나일론대비 15∼20 중량%부터 일정한 값을 나타내었다. 나일론-6와 ABS의 함량비가 5 : 5인 경우 서로 연속상의 구조를 나타내었다. 블렌드의 용융점와 결정화도는 상용화제의 영향을 거의 받지 않은 반면 결정화 온도는 상용화제의 함량이 증가할수록 감소하는 추세를 나타내었다.
The morphology and thermal properties of nylon-6 and ABS blends with reactive compatibilizer have been studied as a function of viscosity ratio of the components, concentration of compatibilizer, and the components ratio. Viscosity ratio of the nylon-6/ABS was varied from 0.3 to 2.0. For 20 wt% nylon and 80 wt% ABS blends, nylon was a dispersed phase and the size of the dispersed phase was decreased by the addition of compatibilizer. It was found that the minimum particle size occurred at the viscosity ratio of 0.75 with or without compatibilizer. Dispersed phase size was decreased significantly by the addition of compatibilizer and tended to level off from 15∼20 wt% compatibilizer based on the amount of nylon. For 50 wt% nylon and 50 wt% ABS blend, the nylon and ABS showed co-continuous phase. No significant difference of the peak melting temperature and crystallinity was observed, while crystallization temperature was decreased with increasing the concentration of compatibilizer.
  1. Xanthos M, "Reactive Extrusion," Hanser, New York (1992)
  2. Levedev YA, Ilavsky M, Dusek K, Lipatov YS, Pelzbauer Z, J. Appl. Polym. Sci., 25, 2493 (1980) 
  3. Lavengood RE, Silver FM, SPE ANTEC Tech. Papers, 33, 1369 (1987)
  4. Howe DV, Wolkowicz MD, Polym. Eng. Sci., 27, 1582 (1987) 
  5. Aoki Y, Watanabe M, Polym. Eng. Sci., 32, 878 (1992) 
  6. Tariaoca VJ, Ziaee S, Barlow JW, Keskkula H, Paul DR, Polymer, 32, 1401 (1991) 
  7. Jordhamo GM, Manson JA, Sperling LH, Polym. Eng. Sci., 26, 517 (1986) 
  8. Favis BD, Willis JM, J. Polym. Sci. B: Polym. Phys., 28, 2259 (1990) 
  9. Wu S, Polym. Eng. Sci., 7, 335 (1987) 
  10. Favis BD, Chalifoux JP, Polym. Eng. Sci., 27, 1591 (1987) 
  11. /elmendorf JJ, VanderBegt AK, Polym. Eng. Sci., 26, 1332 (1986) 
  12. Xanthos M, Polym. Eng. Sci., 28, 1392 (1988) 
  13. Willis JM, Favis BD, Lavallee C, J. Mater. Sci., 28, 1749 (1993) 
  14. Thiele W, Compalloy '90, Schotland Business Inc. (1990)
  15. Aoki Y, Macromolecules, 21, 1277 (1988) 
  16. Morton-Jones DH, "Polymer Processing," Capman and Hall (1989)
  17. Serpe G, Jarrin J, Dawans F, Polym. Eng. Sci., 30, 553 (1990) 
  18. Gonzalez-Nunez R, Favis BD, Carreau PJ, Lavellee C, Polym. Eng. Sci., 33, 851 (1993) 
  19. Favis BD, Chalifoux JP, Polym. Eng. Sci., 27, 1591 (1987) 
  20. Willis JM, Favis BD, Lunt J, Polym. Eng. Sci., 30, 1073 (1990) 
  21. Taylor GI, Proc. Roy. Soc., A146, 501 (1934)
  22. Miller RL, "Polymer Handbook," J. Bandrup and E.H. Immergut, 3rd ed., John Wiley & Sons (1989)