- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.20, No.2, 364-377, March, 1996
재생 폴리우레탄을 이용한 폴리우레탄 복합재료의 특성
Properties of Polyurethane Composites Prepared from Reclaimed Polyurethanes
초록
폐폴리우레탄의 재생을 통한 폴리우레탄 복합재료의 개발에 대한 연구를 수행하기 위해 MDI (4,4'-diphenly methane diisocyanate), PPG (poly(propylene glycol)), TMP (trimethylol propane)로부터 가교 폴리우레탄을 합성하였으며, 이를 폴리우레탄 복합재료의 합성시에 충진제로서 사용하기 위해 입자형태로 제조하였다. 폴리우레탄 입자를 충진제로 사용하여 합성된 복합재료의 밀도, 경도 등과 같은 물리적인 성질은 기준 폴리우레탄과 거의 비슷한 값을 나타내었으나 충격 강도, 인장강도 및 파괴신율 등의 기계적인 성질은 약간 감소하였다. 폴리우레탄 입자의 도입으로 인해 상용성이나 계면에서의 접착력에 있어서는 큰 차이가 없었으나 경질상(hard phase)의 형성이 방해되어 상대적인으로 크기가 감소된 결과로 기계적인 특성의 저하를 초래하였다. 충진제 입자의 크기와 함량이 증가할수록 인장강도, 충격강도 등이 감소하였는데 그 정도는 함량증가의 경우에 더 현저히 나타났다. 팽윤시간의 증가로 충격강도는 향상되었으나 인장강도는 감소하였다. 이는 인장시험의 경우에는 상대적으로 느린 인장력하에서 입자내로 침투되어 얽혀있던 폴리올 사슬이 인장강도의 증가에 큰 기여를 하지 못하고 다시 빠져 나오기 때문인 것같다.
A crosslinked polyurethane (PU) based on 4,4'-dlphenyl methane diisocyanate (MDI), poly(propylene glycol) (PPG), and trimethylol propane (TMP) was prepared in order to conduct the developement of PU/PU composites by reclaiming polyurethane wastes. The crosslinked polyurethane was ground into small particles to make PU( particle)/PU(matrix) composites. Physical properties such as density and hardness of the composites were almost the same as those of standard polyurethane. However, mechanical properties such as impact strength, tensile strength, and elongation at break were deteriorated in the case of composites. Even though the compatibility and the hydrogen bonding at the interface were not affected by the introduction of polyurethane particles, those particles made the formation of hard phase difficult, which resulted in the reduction of mechanical strengths. This effect was more signification in the case of the increase of particle content than the increase of particle size. In addition, the increase of the wetting or swelling time improved impact strength but decreased tensile strength. This may be due to the fact that under the relatively slow tensile stress applied, polyol chains which interpenetrated into particles were disentangled without contributing to the tensile strength.
- White P, Franke M, Hindle P, "Integrated Solid Waste Management: A Lifecycle Inventory," Blackie Academic & Professional (1995)
- Hur T, Polym. Sci. Technol., 6(1), 28 (1995)
- Ehrig RJ, "Plastics Recycling," Hanser Publishers, New York (1992)
- Campbell GA, Meluch WC, J. Appl. Polym. Sci., 21, 581 (1977)
- Ulrich H, Tucker B, Odinak A, Gamache AR, Elastomers Plast., 11, 208 (1979)
- Tesoro G, Polym. News, 12, 265 (1987)
- Miyama S, Conservation Recycling, 10, 265 (1987)
- Bartas B, Modern Plastics Encyclopedia (1989)
- Nobel HL, Plastic World Nov., 12 (1990)
- Sperling LH, "Introduction to Physical Polymer Science," 2nd Ed., Wiley-Interscience, New York (1992)
- Hepburn C, "Polyurethane Elastomers," 2nd Ed., Elsevier Applied Science Publishers, New York (1991)
- Oberth AE, Bruenner RS, J. Polym. Sci. A: Polym. Chem., 8, 605 (1970)
- Smith TL, Am. Chem. Soc. Symp. Ser.(193), 419 (1982)
- Saunders JH, Rubber Chem. Technol., 33, 1259 (1960)
- Flory PJ, Rehner J, J. Chem. Phys., 11, 521 (1943)
- Hermans JJ, Polym. Sci., 59, 191 (1962)
- Allport DC, "Block Copolymers," Elsevier Applied Science Publishers, New York (1973)
- Neilsen LE, J. Appl. Polym. Sci., 10, 97 (1966)
- Smith TL, Trans. Soc. Rheol., 3, 113 (1959)
- Narkis M, J. Appl. Polym. Sci., 15, 469 (1971)
- Young RJ, Lovell PA, "Introdution to Polymers," 2nd Ed., Chapman & Hall (1991)
- Kausch HH, "Polymer Fracture," 2nd, Springer Verlag (1987)
- Cooper SL, Tobolsky AV, J. Appl. Sci., 10, 1837 (1966)
- Miller GW, J. Appl. Polym. Sci., 15, 39 (1971)
- Kinloch AJ, Young RJ, "Fracture Behavior of Polymer," Elsevier Applied Science Publishers, London (1985)