화학공학소재연구정보센터
Biomacromolecules, Vol.8, No.11, 3317-3325, 2007
Bioactive poly(ethylene terephthalate) fibers and fabrics: Grafting, chemical characterization, and biological assessment
The grafting of poly(sodium styrene sulfonate) (pNaSS) onto ozone-treated poly(ethylene terephthalate) (PET) fabric surfaces was characterized by X-ray photoelectron spectroscopy and toluidine blue, colorimetry. Significant amounts of pNaSS were grafted over the range of experimental conditions examined in this study (30-120 min of ozonation, reaction at 65 or 70 degrees C, and reaction times up to 240 min). Within these ranges the amount of grafted pNaSS increased with both ozonation time and reaction temperature. The amount of grafted pNaSS increased over the first 60 min of reaction, then remained relatively constant from 60 to 240 min. For the biological experiments pNaSS-grafted samples were prepared with 30 min of ozonation and 60 min of reaction at a grafting temperature of 70 degrees C. The ozonation time was limited to 30 min to minimize any possible degradation of the PET fabrics by the ozonation treatment. The pNaSS-grafted PET surface adsorbed a factor of 4 more compared to the nongrafted surfaces. The strength of fibroblast adhesion was an order of magnitude higher on pNaSS-grafted PET fabrics compared to that on nongrafted PET fabrics. This. difference in the cell attachment was correlated to the cell spreading, which was better and more homogeneous on the grafted fibers compared to the nongrafted fibers. Fibroblasts adhered more strongly on surfaces precoated with normal human plasma compared to surfaces precoated with 10% fetal calf serum in Dulbecco's modified Eagle's medium.