화학공학소재연구정보센터
Electrophoresis, Vol.29, No.2, 433-440, 2008
Stacking and separation of protein derivatives of naphthalene-2 3-dicarbox aldehyde by CE with light-emitting diode induced fluorescence detection
We describe the stacking and separation of proteins by CE under discontinuous conditions in conjunction with light-emitting diode induced fluorescence (LEDIF) detection using a violet LED at 405 nm. The proteins were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) to form NDA-protein derivatives prior to CE-LEDIF analysis. During the separation, poly(ethylene oxide) (PEO) solution containing CTAB enters from the cathodic inlet to the capillary via electroosomotic flow (EOF). The optimum conditions are: the capillary was filled with 50 mM glycine buffer (pH 9.0) containing 1.0 mM CTAB, NDA-protein derivatives were prepared in deionized water containing 1.0 mM CTAB, and 0.6% PEO was prepared in 50 mM glycine (pH 9.0) containing 2.0 mM CTAB. The analysis of four NDA-protein derivatives is fast (< 3 min), with RSD < 1.5% in terms of migration time. In order to improve the sensitivity of NDA-protein derivatives, a stacking approach based on increases in viscosity and electric field, as well as sieving was applied. The efficient stacking approach provides LODs (S/N = 3) of 2.41, 0.59, 0.61, and 4.22 nM for trypsin inhibitor, HSA, beta-lactoglobulin, and lysozyme, respectively. In addition, we also applied the stacking approach to determination of the concentration of HSA in one urine sample, which was determined to be 0.31 +/- 0.05 mu M (n = 3).