화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.2, 161-167, April, 2008
폴리에틸렌에틸아크릴레이트/카본나노튜브 나노복합체의 제조 및 물성
Preparation and Physical Properties of Poly(ethylene-co-ethyl acrylate)/Carbon Nanotube Nanocomposites
E-mail:
초록
다층카본나노튜브(MWCNT)가 강화된 폴리에틸렌에틸아크릴레이트(EEA) 나노복합체를 용융혼합법과 용액혼합법으로 제조하였다. 카본나노튜브의 형태 및 함량변화에 따른 기계적, 열적, 전기적 특성을 조사하였다. MWCNT의 함량이 증가함에 따라 인장강도, 모듈러스는 증가하였고, 파단신장률은 감소하였다. 할로우 형태의 MWCNT가 일반적인 MWCNT에 비해 우수한 인장강도 및 파단신장률을 나타내었다. MWCNT 함량이 증가함에 따라 약 40 ℃의 열분해온도의 향상을 보였다. 전기적 특성은 용융혼합법의 경우가 가장 높은 전기저항 특성을 나타내었고, 용액혼합법의 경우 일반형 MWCNT가 할로우 MWCNT보다 낮은 체적저항을 보였다. MWCNT의 함량이 증가할수록 파단면 위로 돌출되는 CNT 수가 증가하였고, 인장 변형을 가하면 표면 위로 돌출되는 CNT 수와 길이가 크게 증가하였다. 용융혼합된 시편이 용액혼합에 비해 돌출된 CNT의 수와 길이가 현격히 낮았다.
Multi-walled carbon nanotubes (MWCNT)-reinforced poly(ethylene-co-ethyl acrylate) (EEA) nanocomposites were prepared by both melt and solution mixing methods. The mechanical, thermal, and electrical properties were investigated as a function of type and loading of CNT. The tensile strength and modulus increased, while elongation at break decreased with increasing MWCNT content. The hollow-type MWCNT showed an improved tensile strength and elongation at break compared with a conventional MWCNT. The thermal degradation temperature was increased by around 40 ℃ with increasing the amount of MWCNT. The melt-mixed composites showed the highest volume resistivity. In the case of solution-mixed composites, the conventional MWCNT was estimated to show much lower volume resistivity than that of hollow MWCNT. The number and length of extruded CNT onto the fractured surface increased by both increasing the content of CNT and employing the tensile strain to the sample. The melt-mixed specimens showed much smaller number and shorter length of extruded CNT.
  1. Ijima S, Nature, 354, 56 (1991)
  2. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C, Nature, 386(6624), 474 (1997)
  3. Che GL, Lakshmi BB, Fisher ER, Martin CR, Nature, 393(6683), 346 (1998)
  4. Lee YH, KIEEME, 13, 1 (2000)
  5. Delaney P, Choi HJ, Ihm J, Louie SG, Cohen ML, Nature, 391(6666), 466 (1998)
  6. Ihm JS, Fiber Tech & Indu, 2, 326 (1998)
  7. Tans SJ, Verschueren ARM, Dekker C, Nature, 393(6680), 49 (1998)
  8. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS, Science, 296, 1127 (1999)
  9. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H, Science, 287, 622 (2000)
  10. Baughman RH, Zakhidov AA, Heer WA, Science, 297, 787 (2002)
  11. Min BG, Polym. Sci. Technol., 16, 176 (2005)
  12. Cho YH, Dispersion of Carbon Nanotube, KISTI, Korea (2005)
  13. Yoo TJ, Polym. Sci. Technol., 9, 381 (1998)
  14. Choi MK, Lee SY, J. KIEEME, 13, 6 (2000)
  15. McNally T, Potschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP, J. Polym. Sci. A: Polym. Chem., 46, 8222 (2005)
  16. Kader MA, Choi D, Lee SK, Nah C, Polym. Test, 24, 363 (2005)
  17. Feller JF, Grohens Y, Sens. Actuators B-Chem., 97, 231 (2004)
  18. Kim S, Hwang IH, Chung SH, Eum Y, Jang E, Lee DH, J. Kor. Soc. Waste Manag., 19, 671 (2002)
  19. Yakobson BI, Campbell MP, Brabec CJ, Bernholc J, Comput. Mater. Sci., 8, 341 (1997)
  20. Deng CF, Wang DZ, Zhang XX, Li AB, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 444, 138 (2007)
  21. Gent AN, Engineeringwith Rubber, 2nd Ed., Hanser, New York (1992)