화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.20, No.1, 27-34, March, 2008
Transient rheological probing of PIB/hectorite-nanocomposites
E-mail:
Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay flocs. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.
  1. Alexandre M, Dubois P, Mater. Sci. Eng., 28, 1 (2000)
  2. Barnes HA, J. Non-Newton. Fluid Mech., 70(1-2), 1 (1997)
  3. Batchelor GK, J. Fluid Mech., 41, 545
  4. Bonn D, Tanaka H, Coussot P, Meunier J, J. Phys.: Condens. Matter, 16, S4987 (2004)
  5. Brandrup J, Immergut EH, Polymer Handbook 3rd, John Wiley and Sons, VII/175 (1989)
  6. Dullaert K, Mewis J, J. Rheol., 49(6), 1213 (2005)
  7. Dullaert K, Mewis J, J. Colloid Interface Sci., 287(2), 542 (2005)
  8. Dullaert K, Mewis J, to be published (2008)
  9. DuMond JWM, Phys. Rev., 72, 83 (1947)
  10. Gadala-Maria F, Acrivos A, J. Rheol., 24, 799 (1980)
  11. Giannelis EP, Krishnamoorti R, Manias E, Adv. Polym. Sci., 138, 107 (1999)
  12. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  13. Green DL, Mewis J, Langmuir, 22(23), 9546 (2006)
  14. Grizzuti N, Bifulco O, Rheol. Acta, 36(4), 406 (1997)
  15. Hoffmann B, Dietrich C, Thomann R, Friedrich C, Mulhaupt R, Macromol. Rapid Commun., 21(1), 57 (2000)
  16. Hyunh HT, Roussel N, Coussot P, Phys. Fluids, 17, 033101 (2005)
  17. Jansseune T, Vinckier I, Moldenaers P, Mewis J, J. Non-Newton. Fluid Mech., 99(2-3), 167 (2001)
  18. Kato M, Usuki A, Okada A, J. Appl. Polym. Sci., 66(9), 1781 (1997)
  19. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A, Macromolecules, 30(20), 6333 (1997)
  20. Krishnamoorti R, Giannelis EP, Macromolecules, 30(14), 4097 (1997)
  21. Krishnamoorti R, Yurekli K, Curr. Opin. Colloid Interface Sci., 64, 464 (2001)
  22. Le Meins JF, Moldenaers P, Mewis J, Ind. Eng. Chem. Res., 41(25), 6297 (2002)
  23. Lele A, Mackley M, Galgali G, Ramesh C, J. Rheol., 46(5), 1091 (2002)
  24. Mackay ME, Kaffashi B, J. Colloid Interface Sci., 174(1), 117 (1995)
  25. Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B, Guan Z, Chen G, Krishnan RS, Science, 311, 1740 (2006)
  26. Mackay ME, Liang CH, Halley PJ, Rheol. Acta, 31, 481 (1992)
  27. Mewis J, J. Non-Newton. Fluid Mech., 6, 1 (1979)
  28. Mewis J, Spaull AJB, Helsen J, Nature, 253, 618 (1975)
  29. Minale M, Moldenaers P, Mewis J, J. Rheol., 43(3), 815 (1999)
  30. Mobuchon C, Carreau PJ, Heuzey MC, Rheol. Acta, 46(8), 1045 (2007)
  31. Moldenaers P, Fuller GG, Mewis J, Macromolecules, 22, 60 (1989)
  32. Pignon F, Magnin A, Piau JM, J. Rheol., 42(6), 1349 (1998)
  33. Potanin A, J. Rheol., 48(6), 1279 (2004)
  34. Prasad V, Trappe V, Dinsmore AD, Segre PN, Cipelletti L, Weitz DA, Faraday Discuss., 123, 1 (2003)
  35. Ray SS, Okamoto M, Prog. Polym. Sci, 28, 1539 (2003)
  36. Ren JX, Casanueva BF, Mitchell CA, Krishnamoorti R, Macromolecules, 36(11), 4188 (2003)
  37. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P, Macromolecules, 34(6), 1864 (2001)
  38. Trappe V, Weitz DA, Phys. Rev. Lett., 85, 449 (2000)
  39. Vaia RA, Giannelis EP, Macromolecules, 30(25), 8000 (1997)
  40. Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW, J. Rheol., 51(3), 429 (2007)
  41. Vinckier I, Mewis J, Moldenaers P, Rheol. Acta, 36(5), 513 (1997)
  42. Willenbacher N, J. Colloid Interface Sci., 182(2), 501 (1996)
  43. Wyss HM, Tervoort EV, Gauckler LJ, J. Am. Ceram. Soc., 88(9), 2337 (2005)