화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.2, 279-285, April, 2008
메조 세공의 고체산 촉매를 이용한 2-나프톨의 에테르화 반응
The Etherification of 2-Naphthol over Mesoporous Solid Acid Catalysts
E-mail:
초록
여러 가지 고체산 촉매를 이용하여 2-naphthol과 에탄올의 에테르화 반응을 연구하였다. 본 연구에서 촉매는 CNS, CNSWS, SCMS, MCF, SBA-15와 이 촉매에 sulfonic acid를 붙인 CNS-SO3H, CNSWS-SO3H, SCMS-SO3H, MCFSO3H, SBA-15-SO3H를 사용하였다. 반응온도 180 ℃, LHSV=1 h-1, 에탄올/2-naphthol의 몰 비 20인 조건으로 고정층 반응기에서 반응하여 각 촉매에서 2-naphthol의 전환율과 2-naphthyl ethyl ether의 선택도를 측정하였다. 2-naphthol의 전환율과 2-naphthyl ethyl ether의 선택도는 carbon 계열의 고체산 촉매에서 보다 silica 계열의 고체산 촉매에서 더 높게 나타났다. silica 계열의 고체산 촉매에서 2-naphthol의 전환율은 70~90%, 2-naphthyl ethyl ether의 선택도는 90%이상으로 나타났다. 촉매의 특성을 관찰하기 위해 XRD, SEM, TEM, NH3-TPD를 수행하였다.
The etherification of 2-naphthol with ethanol has been carried out over various solid acid catalysts. CNS, CNSWS, SCMS, MCF, and SBA-15 with and without sulfonic acid were used in this study as solid acid catalysts. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether were obtained at reaction temperature = 180 ℃, LHSV = 1 h-1, ethanol/2-naphthol molar ratio = 20 using a fixed-bed down flow reactor. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether over silica group catalysts were higher than them over carbon group catalysts. The conversion of 2-naphthol was 70-90% and the selectivity of 2-naphthyl ethyl ether was more than 90% over silica group solid acid catalysts. It was performed XRD, SEM, TEM, and NH3-TPD to characterize solid acid catalysts.
  1. Yadav GD, Krishnan MS, Ind. Eng. Chem. Res., 37(8), 3358 (1998)
  2. Selvaraj M, Pandurangan A, Seshadri KS, Sinha PK, Krishnasamy V, Lal KB, J. Mol. Catal. A-Chem., 192(1-2), 153 (2003)
  3. Chen LW, Chou CY, Ko AN, Appl. Catal. A: Gen., 178(1), L1 (1999)
  4. Kim JW, Kim DJ, Han JU, Kang M, Kim JM, Yie JE, Catal. Today, 87(1-4), 195 (2003)
  5. Kirumakki SR, Nagaraju N, Chary KVR, Narayanan S, J. Catal., 221(2), 549 (2004)
  6. Porchet S, Kiwiminsker L, Doepper R, Renken A, Chem. Eng. Sci., 51(11), 2933 (1996)
  7. Yoon SB, Sohn K, Kim JY, Shin CH, Yu JS, Hyeon T, Adv. Mater., 14(1), 19 (2002)
  8. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548 (1998)
  9. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 120(24), 6024 (1998)
  10. Lettow JS, Han YJ, Schmidt-Winkel P, Yang PD, Zhao DY, Stucky GD, Ying JY, Langmuir, 16(22), 8291 (2000)
  11. Szymaska K, Bryjak J, Mrowiec-Bialon J, Jarze˛bski AB, Microporous Mesoporous Mater., 99(1-2), 167 (2007)
  12. Kim H, Jung JC, Kim P, Yeom SH, Lee KY, Song IK, J. Mol. Catal. A-Chem., 259(1-2), 150 (2006)
  13. Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M, Catal. Today, 116(2), 157 (2006)
  14. Yang LM, Wang YJ, Luo GS, Dai YY, Microporous Mesoporous Mater., 84(1-3), 275 (2005)
  15. Zheng Y, Li J, Zhao N, Wei W, Sun Y, Microporous Mesoporous Mater., 92(1-3), 195 (2006)
  16. Karimi B, Khalkhali M, J. Mol. Catal. A-Chem., 271(1-2), 75 (2007)
  17. Gupta R, Paul S, Gupta R, J. Mol. Catal. A-Chem., 266(1-2), 50 (2007)
  18. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD, Chem. Mater., 12(8), 2448 (2000)
  19. Reddy SS, Raju BD, Kumar VS, Padmasri AH, Narayanan S, Rao KSR, Catal. Commun., 8(3), 261 (2007)
  20. Kumar VS, Nagaraja BM, Shashikala V, Seetharamulu P, Padmasri AH, Raju BD, Rao KSR, J. Mol. Catal. A-Chem., 223(1-2), 283 (2004)