화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.4, 345-352, June, 2008
In vitro and in vivo Application of PLGA Nanofiber for Artificial Blood Vessel
E-mail:,
Poly(lactic-co-glycolic acid) (PLGA) tubes (5 mm in diameter) were fabricated using an electro spinning method and used as a scaffold for artificial blood vessels through the hybridization of smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from canine bone marrow under previously reported conditions. The potential clinical applications of these artificial blood vessels were investigated using a canine model. From the results, the tubular-type PLGA scaffolds for artificial blood vessels showed good mechanical strength, and the duallayered blood vessels showed acceptable hybridization behavior with ECs and SMCs. The artificial blood vessels were implanted and substituted for an artery in an adult dog over a 3-week period. The hybridized blood vessels showed neointimal formation with good patency. However, the control vessel (unhybridized vessel) was occluded during the early stages of implantation. These results suggest a shortcut for the development of small diameter, tubular-type, nanofiber blood vessels using a biodegradable material (PLGA).
  1. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NAF, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN, Nat. Med., 12, 361 (2006)
  2. Edelman ER, Circ. Res., 85, 111 (1999)
  3. Musey PI, Ibim SM, Talukder NK, N.Y. Acad. Sci., 961, 279 (2002)
  4. Bos GW, Poot AA, Beugeling T, van Aken WG, Feijen J, Arch. Physiol. Biochem., 106, 100 (1998)
  5. Mooney DJ, Cima L, Langer R, Johnson L, Hansen LK, Ingber DE, Vancanti JP, Mat. Res. Soc. Symp. Proc., 252, 345 (1992)
  6. Isengerg BC, Williams C, Tranquillo RT, Circ. Res., 98, 25 (2006)
  7. Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C, Tissue Eng., 11, 1535 (2005)
  8. Bianco P, Robey PG, Nature, 414, 118 (2001)
  9. Sales KM, Salacinski HJ, Alobaid N, Mikhail M, Balakrishnan V, Seifalian AM, Trends Biochem., 23, 461 (2005)
  10. Abedin M, Tintut Y, Demer LL, Circ. Res., 95, 671 (2004)
  11. Matsumura G, Miyagawa-Tomita S, Shinoka T, Ikada Y, Kurosawa H, Circulation, 108, 1729 (2003)
  12. L’Heureux N, McAllister TN, de la Fuente LM, N. Engl. J. Med., 357, 1451 (2007)
  13. Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ, Park HY, Jang YS, Chang BC, Choi CY, Kim BS, Annals. Surgery, 241, 506 (2005)
  14. Yang F, Murugan R, Wang S, Ramakrishna S, Biomaterials, 26, 2603 (2005)
  15. Li D, Wang Y, Xia Y, Nano Lett., 3, 1167 (2003)
  16. Bae HK, Chung CP, Chung DJ, Key Eng. Mater., 342-343, 325 (2007)
  17. Jung KJ, Ahn KD, Han DK, Ahn DJ, Macromol. Res., 13(5), 446 (2005)
  18. Lee IS, Kwon OH, Meng W, Kang IK, Ito Y, Macromol. Res., 12(4), 374 (2004)
  19. Armentano RL, Santana DB, Cabrera Fischer EI, Graf S, Campos HP, German YZ, Saldias MC, Alvarez I, Cryobiology, 52, 17 (2006)
  20. Uchida T, Ikeda S, Oura H, Tada M, Nakano T, Fukuda T, Matsuda T, Negoro M, Arai F, J. Biotechnol., 133, 213 (2008)
  21. Kim BS, Mooney DJ, J. Biomed. Mater. Res., 41, 322 (1998)
  22. Willams C, Wick T, Tissue Eng., 10, 930 (2004)
  23. Higgins SP, Solan AK, Niklason LE, J. Biomed. Mater. Res., 67A, 295 (2003)
  24. Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Ann. Thorac. Surg., 68, 2298 (1999)
  25. Bunda S, Kaviani N, Hinek A, J. Biol. Chem., 280, 2341 (2005)