화학공학소재연구정보센터
Clean Technology, Vol.13, No.4, 287-292, December, 2007
M/Al2O3 (M = Mn, Fe, Co, Ni, Cu) 촉매 상에서 에탄올 자열개질반응에 의한 수소 제조
Hydrogen Production by Auto-thermal Reforming of Ethanol over M/Al2O3 (M = Mn, Fe, Co, Ni, Cu) Catalysts
E-mail:
초록
상용 알루미나(Al2O3)에 담지된 M/Al2O3 (M=Mn, Fe, Co, Ni, Cu) 촉매를 함침법에 의해 제조하였으며 이를 에탄올 자열개질반응에 의한 수소제조에 적용하였다 각각의 촉매는 고유한 금속상을 가지는 것으로 나타났으며, 생성물의 분포는 활성금속의 종류에 크게 의존하였다. 제조된 촉매 중에서 Ni/Al2O3및 Co/Al2O3는 에탄올 자열개질반응에서 매우 우수한 촉매활성을 보였다. 그러나 두 촉매상에서의 반응메커니즘은 서로 다른 것으로 나타났다. Ni/Al2O3 촉매는 500℃의 반응온도에서 100%의 에탄올 전환율을 보였으나 수소 선택도에서는 시간에 따라 급격한 저하현상을 나타내었다. 한편 Co/Al2O3 촉매는 수소 선택도 면에서 우수한 활성을 보였으나, 에탄올 전환율이 저조하여 수소 수율에는 큰 변화가 나타나지 않았다.
M/Al2O3 (M = Mn, Fe, Co, Ni, Cu) catalysts supported on commercial alumina (Al2O3) were prepared by an impregnation method, and were applied to the hydrogen production by auto-thermal reforming of ethanol. It was revealed that each catalyst retained its own metallic phase and product distribution strongly depended on the identity of active metal. Among the catalysts prepared, Ni/Al2O3 and Co/Al2O3 showed the best catalytic performance in the auto-thermal reforming of ethanol. However, the reaction mechanisms over these two catalysts were different. Ni/Al2O3 catalyst showed 100% ethanol conversion at 500 , but it exhibited a rapid decrease in hydrogen selectivity. Although Co/Al2O3 catalyst showed an excellent performance in hydrogen selectivity, on the other hand, no significant improvement in hydrogen yield was observed due to the low ethanol conversion over the catalyst.
  1. Schrope M, Nature, 414, 682 (2001)
  2. Song CS, Catal. Today, 77(1-2), 17 (2002)
  3. Kim MH, Lee EK, Jun JH, Han GY, Kong SJ, Lee BK, Lee TJ, Yoon KJ, Korean J. Chem. Eng., 20(5), 835 (2003)
  4. Vaidya PD, Rodrigues AE, Chem. Eng. J., 117(1), 39 (2006)
  5. Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS, Appl. Catal. B: Environ., 55(4), 287 (2005)
  6. Cavallaro S, Freni S, Int. J. Hydrog. Energy, 21, 465 (1996)
  7. Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P, Appl. Catal. A: Gen., 246(2), 323 (2003)
  8. Mattos LV, Noronha E, J. Catal., 233(2), 453 (2005)
  9. Youn MH, Seo JG, Kim P, Song IK, J. Mol. Catal. A-Chem., 261(2), 276 (2007)
  10. Velu S, Suzuki K, J. Phys. Chem. B, 106, 2737 (2002)
  11. Youn MH, Seo JG, Cho KM, Jung JC, Kim H, La KW, Park DR, Song IK, Korean J. Chem. Eng., In Press
  12. Cavallaro S, Chiodo V, Vita A, Freni S, J. Power Sources, 123(1), 10 (2003)
  13. Kugai J, Subramani V, Song CS, Engelhard MH, Chin YH, J. Catal., 238(2), 430 (2006)
  14. Stobbe ER, de Boer BA, Geus JW, Catal. Today, 47(1-4), 161 (1999)
  15. Shaheen WM, Hong KS, Thermochim. Acta, 381(2), 153 (2002)
  16. Zhang Y, Koike M, Yang R, Hinchiranan S, Vitidsant T, Tsubaki N, Appl. Catal., 292, 252 (2005)
  17. Marino F, Baronetti G, Jobbagy M, Laborde M, Appl. Catal. A: Gen., 238(1), 41 (2003)
  18. Velu S, Satoh N, Gopinath CS, Suzuki K, Catal. Lett., 82(1-2), 145 (2002)
  19. Youn MH, Seo JG, Kim P, Kim JJ, Lee HI, Song IK, J. Power Sources, 162(2), 1270 (2006)
  20. Torres JA, Llorca J, Casanovas A, Dominguez M, Salvado J, Montane D, J. Power Sources, 169(1), 158 (2007)
  21. O'Shea VAD, Homs N, Pereira EB, Nafria R, de la Piscina PR, Catal. Today, 126(1-2), 148 (2007)
  22. Fatsikostas AN, Verykios XE, J. Catal., 225(2), 439 (2004)
  23. Ni M, Leung DYC, Leung MKH, Int. J. Hydrog. Energy, In Press
  24. Haga F, Nakajima T, Miya H, Mishima S, Catal. Lett., 48(3-4), 223 (1997)