화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.1, 38-44, January, 2008
A simple chemical route for the synthesis of gamma-Fe2O3 nano-particles dispersed in organic solvents via an iron-hydroxy oleate precursor
E-mail:
A simple chemical route is developed to generate maghemite (gamma-Fe2O3) nano-particles, dispersed in organic solvents via a thermal decomposition of an iron-hydroxy oleate precursor. An iron-hydroxy oleate precursor was generated by chemical reaction of mixed iron nitrate and oleic acid in ethanol with 30% NH3 solution with continuous stirring at room temperature. The precursor thus obtained was suspended in hexadecane and then mixed with necessary quantity of oleic acid at room temperature with constant stirring and is further heated to 220℃/2 h to convert it in to gamma-Fe2O3 nano-particles. The mixture is allowed to cool slowly to room temperature. The gamma-Fe2O3 nano-particles remained in dispersed state in hexadecane. The iron-hydroxy oleate molecular precursor and gamma-Fe2O3 nano-particles are characterized using various physicochemical characterization techniques like DTA/TGA, IR, XRD, vibrating sample magnetometer (VSM), TEM, and EDAX. The characterization results indicated that gamma-Fe2O3 nano-particles (size 6-15 nm) are obtained by a thermal decomposition of an iron-hydroxy oleate precursor and possess spherical shape. These particles remained dispersed state in organic solvent due to capping action of oleate molecules. The results are quite reproducible and gamma-Fe2O3 nano-particles can also be dispersed in another organic solvents like kerosene, 2-methyl naphthalene etc. (c) 2007 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
  1. Schmid G, Et AL, Nanoparticles: From Therapy to Applications, Wiley-VCH, Weinheim (2004)
  2. Alivisatos AP, Science, 271(5251), 933 (1996)
  3. Hafeli U, Schutt W, Teller J, Zborowski M, Scientific and Clinical Applications of Magnetic Carriers, Plenum Press (1997)
  4. Pouliquen D, Chouly C, in: R. Arshady (Ed.), Magnetic Microcarriers for Medical Applications, Citus Books, London, 1999, , p. 343, Chapter 12
  5. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L, J. Am. Ceram. Soc., 124, 2856 (2002)
  6. Zhao M, Josephson L, Tang Y, Weissleder R, Angew. Chem.-Int. Edit., 42, 1375 (2003)
  7. Gupta AK, Gupta M, Biomaterials, 26, 3995 (2005)
  8. Shen LF, Laibinis PE, Hatton TA, Langmuir, 15(2), 447 (1999)
  9. Yu WW, Falkner JC, Yavuz CT, Covin VL, Chem. Commun., 20, 2306 (2004)
  10. Rockenberger J, Scher EC, Alivisatos AP, J. Am. Chem. Soc., 121(49), 11595 (1999)
  11. Cushing BL, Kolesnichenko VL, O'Connor CJ, Chem. Rev., 104(9), 3893 (2004)
  12. Kim DK, Mikhaylova M, Zhang Y, Muhammed M, Chem. Mater., 15, 1617 (2003)
  13. Wang W, Efrima S, Regev O, Langmuir, 14(3), 602 (1998)
  14. Wu N, Fu L, Su M, Aslam M, Wong KC, Dravid VP, Nano Lett., 4, 383 (2004)
  15. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX, J. Am. Chem. Soc., 126(1), 273 (2004)
  16. Cheon JW, Kang NJ, Lee SM, Lee JH, Yoon JH, Oh SJ, J. Am. Chem. Soc., 126(7), 1950 (2004)
  17. Hyeon T, Lee SS, Park J, Chung Y, Bin Na H, J. Am. Chem. Soc., 123(51), 12798 (2001)
  18. Bourlinos AB, Simopoulos A, Petridis D, Chem. Mater., 14, 899 (2002)
  19. Pinheiro EA, de Abreu Filho PP, Galembeck F, Langmuir, 3, 445 (1987)
  20. Park J, An K, Hwang Y, Park JE, Noh HN, Kim JY, Park JH, Hwang NM, Hyeon T, Nat. Mater., 3, 891 (2004)
  21. Li CC, Chang MH, Mater. Lett., 58, 3903 (2004)
  22. Schwertmann U, Cornell RM, Iron Oxide in the Laboratory: Preparation and Characterization, VCH Verlagsgesellschaft, Weinheim, 1991, p. 81
  23. Potdar HS, Deshpande SB, Deshpande AS, Khollam YB, Patil AJ, Pradhan SD, Int. J. Inorg. Mater., 3, 613 (2001)
  24. Dutta PK, Asiaie S, Akbar SA, Zhu W, Chem. Mater., 6, 1542 (1994)
  25. Synder RG, J. Mol. Spectrosc., 7, 116 (1961)
  26. Synder RG, J. Chem. Phys., 71, 3229 (1979)
  27. Cassal HL, Mantsch HH, Cameron DG, Synder RG, J. Chem. Phys., 77, 2825 (1982)
  28. Kobayashi, Kaneko F, Sato K, Suzuki M, J. Phys. Chem., 90 (1986)
  29. Koyama Y, Ikeda K, Chem. Phys. Lipids, 26, 149 (1980)
  30. Bellamy LJ, The Infrared Spectra of Complex Molecules, third ed., Chapman and Hall, London, 1975, Chapters 2, 3 and 10
  31. Colthup NB, Daly LH, Wiberley SE, Introduction to Infrared and Raman Spectroscopy, second ed., Academic Press, NY, 1975, Chapters 7 and 9
  32. Alexander MR, Beamson G, Blomfield CJ, Leggett G, Duc TM, J. Electron Spectrosc., 121, 19 (2001)
  33. Li ZW, Zhu YF, Appl. Surf. Sci., 211(1-4), 315 (2003)
  34. Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE, J. Magn. Magn. Mater., 279, 210 (2004)
  35. Jing Z, Han D, Wu S, Mater. Lett., 59, 804 (2005)
  36. Jing Z, Wu S, Mater. Lett., 58, 3637 (2004)
  37. Shen XC, Fang XZ, Zhou YH, Liang H, Chem. Lett., 33(11), 1468 (2004)
  38. Berkowitz AE, Schuele WJ, Flanders PJ, J. Appl. Phys., 39, 1261 (1968)
  39. Hong RY, Pan TT, Li HZ, J. Magn. Magn. Mater., 303, 60 (2006)