화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.3, 308-314, May, 2008
The catalytic performance of Pt impregnated MCM-41 and SBA-15 in selective catalytic reduction of NOx
E-mail:,
This study compared the de-NOx performance and surface physical properties of Pt (1.0 wt.%)-impregnated MCM-41(meso-pore) and SBA-15 (meso- and micro-pores) with different frameworks. In the de-NOx reaction, NO reduction occurred from 150 degrees C with the combustion of a reducing reagent (propylene) in Pt/SBA-15 while it appeared from 200 degrees C in Pt/MCM-41. The level of conversion reached 80% at 200 degrees C in the case of Pt/MCM-41 but was decreased rapidly with increasing reaction temperature. Although the level of NO conversion was higher in Pt/SBA-15 (100% conversion) at the lower temperature of 150 degrees C, it decreased slightly to 83% above 200 degrees C, which was maintained up to 600 degrees C. This result was attributed to the differences in the structural dimension between Pt/MCM-41 and Pt/SBA-15 and the adsorption abilities of the reducing agent and NO, as well as the different Pt active species over MCM-41 and SBA-15. The adsorption abilities of NO and the reducing agent (propylene) were definitely higher on Pt/SBA-15 than those on Pt/MCM-41, and was maintained at high temperatures on Pt/SBA-15. XPS suggested that Pt, PtO, and PtO2 play a role as the active species on both catalysts. However, the Pt to PtO2 ratio was larger on SBA-15 than on MCM-41. The in situ IR spectra suggested that the de-NOx reaction in Pt impregnated in both catalysts progressed by partial oxidation, resulting in the production of NO2, ONO, and NCO as intermediates but the de-NOx reaction was more active on Pt/SBA-15 than on Pt/MCM-41. (C) 2008 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
  1. Iwamoto M, Frukawa H, Mine Y, Uemura F, Mikuriya S, Kagawa S, J. Chem. Soc. Chem. Commun., 1272 (1986)
  2. Iwamoto M, Yahiro H, Yu-u Y, Shundo S, Mizuno N, Shokubai, 32, 430 (1990)
  3. Walker AP, Catal. Today, 26(2), 107 (1995)
  4. Yan JY, Lei GD, Sachtler WM, Kung HH, J. Catal., 161(1), 43 (1996)
  5. Burch R, Millington PJ, Walker AP, Appl. Catal. B: Environ., 4(1), 65 (1994)
  6. Park DW, Kim WS, Choi YK, J. Ind. Eng. Chem., 12(4), 571 (2006)
  7. Burch R, Watling TC, Catal. Lett., 43(1-2), 19 (1997)
  8. Tanaka T, Okuhara T, Misono M, Appl. Catal. B: Environ., 4(1), 1 (1994)
  9. Bamwenda GR, Ogata A, Obuchi A, Oi J, Mizuno K, Skrzypek J, Appl. Catal. B: Environ., 6(4), 311 (1995)
  10. Xin M, Hwang IC, Kim DH, Cho ST, Woo SI, Appl. Catal. B: Environ., 21(3), 183 (1999)
  11. Shen SC, Kawi S, Catal. Today, 68(1-3), 245 (2001)
  12. Long RQ, Yang RT, Catal. Lett., 52(1-2), 91 (1998)
  13. Jeon JY, Kim HY, Woo SI, Appl. Catal. B: Environ., 44(4), 311 (2003)
  14. Captain DK, Amiridis MD, J. Catal., 184(2), 377 (1999)
  15. Garcia-Cortes JM, Perez-Ramirez J, Illan-Gomez MJ, Kapteijn F, Moulijn JA, de Lecea CSM, Appl. Catal. B: Environ., 30(3-4), 399 (2001)
  16. Jang JH, Lee SC, Kim DJ, Kang M, Choung SJ, Appl. Catal. A: Gen., 286(1), 36 (2005)
  17. Oh KS, Woo SI, Catal. Lett., 110(3-4), 247 (2006)
  18. Pena ML, Kan Q, Corma A, Rey F, Microporous Mesoporous Mater., 44, 9 (2001)
  19. Zhao D, Goldfarb D, J. Chem. Soc. Chem. Commun., 8, 875 (1995)
  20. Kiss G, Josepovits VK, Kovacs K, Ostrick B, Fleischer M, Meixner H, Reti F, Thin Solid Films, 436(1), 115 (2003)
  21. Karhu H, Kalantar A, Vayrynen IJ, Salmi T, Murzin DY, Appl. Catal. A: Gen., 247(2), 283 (2003)
  22. Schiesser W, Vinek H, Jentys A, Appl. Catal. B: Environ., 33(3), 263 (2001)
  23. Chi YW, Chuang SSC, J. Catal., 190(1), 75 (2000)
  24. Huuhtanen M, Kolli T, Maunula T, Keiski RL, Catal. Today, 75(1-4), 379 (2002)
  25. Shen SC, Kawi S, J. Catal., 213(2), 241 (2003)
  26. Jeon JY, Kim HY, Woo SI, Appl. Catal. B: Environ., 44(4), 301 (2003)