화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.5, 441-445, July, 2008
Ring-Opening Polymerization of ε-Caprolactone and Cyclohexene Oxide Initiated by Aluminum β-Ketoamino Complexes: Steric and Electronic Effect of 3-Position Substituents of the Ligands
E-mail:
A series of aluminum complexes supported by β-ketoamino, ligand-bearing, 3-position substituents LAlEt2 (L=CH3C(O)C(Cl)=C(CH3)NAr (L1), L=CH3C(O)C(H)=C(CH3)NAr (L2), L=CH3C(O)C(Ph)=C(CH3)NAr(L3), and L=CH3C(O)C(Me)=C(CH3)NAr (L4), Ar=2,6-iPr2C6H3) were synthesized in situ and employed in the ringopening polymerization (ROP) of ε-caprolactone (ε-CL) and cyclohexene oxide (CHO). The 3-position substituents on the β-ketoamino ligand backbone of the aluminum complexes influenced the catalyst activity remarkably for both ROP of ε-CL and CHO. Aluminum β-ketoamino complexes displayed different catalytic behavior in ROP of ε-CL and CHO. The order of the catalytic activity of LAlEt2 was L1AlEt2>L2AlEt2>L3AlEt2>L4AlEt2 for ROP of ε-CL, being opposite to the electron-donating ability of the 3-position substituents on the β-ketoamino ligand, while the order of the catalytic activity for ROP of CHO was L1AlEt2>L3AlEt2>L4AlEt2>L2AlEt2. The effects of reaction temperature and time on the ROP were also investigated for both ε-CL and CHO.
  1. Ohtsuka Y, Ikeno T, Yamada T, Tetrahedron: Asymmetry, 11, 3671 (2000)
  2. Mita T, Ikeno T, Yamada T, Org. Lett., 4, 2457 (2002)
  3. Jones D, Roberts A, Cavell K, Keim W, Englert U, Skelton BW, White AH, J. Dalton. Trans., 255 (1998)
  4. Zh YZ, Liu JY, Li YS, Tong YJ, J. Organomet. Chem., 689, 1295 (2004)
  5. He XH, Yao YZ, Luo X, Zhang JK, Liu YH, Zhang L, Wu Q, Organometallics, 22, 4952 (2003)
  6. Tang LM, Duan YQ, Pan L, Li YS, J. Polym. Sci. A: Polym. Chem., 43, 1681 (2005)
  7. Wang HY, Zhang J, Meng X, Jin GX, J. Organomet. Chem., 691, 1275 (2006)
  8. Zhang D, Jin GX, Weng LH, Wang FS, Organometallics, 23, 327 (2004)
  9. Bao F, Lue XQ, Kang BS, Wu Q, Eur. Polym. J., 42, 928 (2006)
  10. Liu BY, Tian CY, Zhang L, Yan WD, Zhang WJ, J. Polym. Sci. A: Polym. Chem., 44, 6243 (2006)
  11. Yu RC, Hung CH, Huang JH, Lee HY, Chen JT, Inorg. Chem., 41(24), 6450 (2002)
  12. Shuka P, Gordon JC, Cowley AH, Jones JN, J. Org. Chem., 690, 1366 (2005)
  13. Kuo PC, Chen IC, Lee HM, Hung CH, Huang JH, Inorg. Chim. Acta., 358, 3761 (2005)
  14. Doherty S, Errington RJ, Housley N, Clegg W, Organometallics, 23, 2382 (2004)
  15. Yamamoto HE, Lewis Acids in Organic Synthesis, Wiley-VCH, New York (2000)
  16. Atwood DA, Harvey MJ, Chem. Rev., 101(1), 37 (2001)
  17. Aida T, Inoue S, Accounts Chem. Res., 29, 39 (1996)
  18. Liu YC, Ko BT, Lin CC, Macromolecules, 34(18), 6196 (2001)
  19. Chen CT, Huang CA, Huang BH, Dalton. Trans., 3799 (2003)
  20. Pang X, Du HZ, Chen XS, Zhuang XL, Cui DM, Jing XB, J. Polym. Sci. A: Polym. Chem., 43(24), 6605 (2005)
  21. Timol SM, Luximon AB, Jhurry D, Macromol. Symp., 231, 69 (2006)
  22. Hormnirun P, Marshall EL, Gibson VC, White AJP, Williams DJ, J. Am. Chem. Soc., 126(9), 2688 (2004)
  23. Moore DR, Cheng M, Lobkovsky EB, Coates GW, Angew. Chem. Int. Ed., 41, 2599 (2002)
  24. Nomura N, Aoyama T, Ishii R, Kondo T, Macromolecules, 38(13), 5363 (2005)
  25. Alcazar-Roman LM, O'Keefe BJ, Hillmyer MA, William BT, Dalton. Trans., 3082 (2003)
  26. Byun SH, Seo HS, Lee SH, Ha CS, Kim I, Macromol. Res., 15(5), 393 (2007)
  27. Tian J, Feng YK, Xu YS, Macromol. Res., 14(2), 209 (2006)
  28. Clegg W, Cope EK, Edwards AJ, Mair FS, Inorg. Chem., 37(9), 2317 (1998)
  29. Mcdaniel DH, Brown HC, J. Org. Chem., 23, 420 (1958)