화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.25, No.4, 838-845, July, 2008
Formation of deagglomerated PLGA particles and PLGA-coated ultra fine powders by rapid expansion of supercritical solution with ethanol cosolvent
E-mail:
Rapid expansion of supercritical solution (RESS) was used for preparing polymer particles and polymer coating of ultra fine powders. The polymer of pharmaceutical interest was Poly(lactic-co-glycolic acid) (PLGA with PLA : PGA ratio of 85 : 15 and MW of 50,000-75,000) and the simulated core particles were 1.4-μm SiO2 and 70-nm TiO2 particles. The supercritical solution was prepared by dissolving PLGA in supercritical carbon dioxide with ethanol as a cosolvent. Supercritical solution of CO2-PLGA was sprayed through capillary nozzles to ambient conditions, resulting in formation of submicron PLGA particles. Similarly, rapid expansion of supercritical solution of CO2-PLGA suspended with the core particles could provide solvent evaporation and deposition of submicron PLGA particles on the surface of the core particles, resulting in the formation of coating films on dispersed particles of SiO2 and agglomerates of TiO2. The influences of the core particle size, spray nozzle diameter as well as powder-to-polymer weight ratio were also investigated and discussed with respect to the coating performance.
  1. Jono K, Ichikawa H, Miyamoto M, Fukumori Y, Powder Technol., 113(3), 269 (2000)
  2. Geldart D, Powder Technol., 7, 285 (1973)
  3. Fu K, Griebenow K, Hsieh L, Klibanov AM, Langer R, J. Control. Release, 58, 357 (1999)
  4. Wang JJ, Chua KM, Wang CH, J. Colloid Interface Sci., 271(1), 92 (2004)
  5. Jung J, Perrut M, J. Supercrit. Fluids, 20(3), 179 (2001)
  6. Mishima K, Matsuyama K, Tanabe D, Yamauchi S, Young TJ, Johnston KP, AIChE J., 46(4), 857 (2000)
  7. Ribeiro Dos Santos I, Richard J, Pech B, Thies C, Benoit JP, Int. J. Pharm., 242, 69 (2002)
  8. Tsutsumi A, Ikeda M, Chen W, Iwatsuki J, Powder Technol., 138(2-3), 211 (2003)
  9. Wang YL, Dave RN, Pfeffer R, J. Supercrit. Fluids, 28(1), 85 (2004)
  10. TOM JW, DEBENEDETTI PG, JEROME R, J. Supercrit. Fluids, 7(1), 9 (1994)
  11. Yeo SD, Lim PG, Lee GB, Debenedetti H, Biotechnol. Bioeng., 41, 341 (1993)
  12. Debenedetti PG, Lim GB, Prud’Homme RK, European Patent EP 0 542 314 (1992)
  13. Choi YH, Kim J, Noh MJ, Park EM, Yoo KP, Korean J. Chem. Eng., 13(2), 216 (1996)
  14. Li G, Chu J, Song ES, Row KH, Lee KH, Lee YW, Korean J. Chem. Eng., 23(3), 482 (2006)
  15. Hanna M, York P, Patent WO 95/01221 (1994)
  16. Noh MJ, Kim TG, Hong IK, Yoo KP, Korean J. Chem. Eng., 12(1), 48 (1995)
  17. Zhong MH, Han BX, Yan HK, J. Supercrit. Fluids, 10(2), 113 (1997)
  18. Guan B, Liu ZM, Han BX, Yan HK, J. Supercrit. Fluids, 14(3), 213 (1999)
  19. Li QS, Zhang ZT, Zhong CL, Liu YC, Zhou QR, Fluid Phase Equilib., 207(1-2), 183 (2003)
  20. Chafer A, Fornari T, Berna A, Stateva RP, J. Supercrit. Fluids, 32(1-3), 89 (2004)
  21. Jennings DW, Lee RJ, Teja AS, J. Chem. Eng. Data, 36, 303 (1991)
  22. Susuki T, Tsuge N, Nakahama K, Fluid Phase Equilib., 67, 213 (1991)
  23. Day CY, Chang CJ, Chen CY, J. Chem. Eng. Data, 41, 839 (1996)
  24. Patel NC, Teja AS, Chem. Eng. Sci., 37, 463 (1982)
  25. Gros HP, Bottini SB, Brignole EA, Fluid Phase Equilib., 139(1-2), 75 (1997)
  26. Dixon DJ, Johnston KP, Bodmeier RA, AIChE J., 39, 127 (1993)
  27. Mohamed RS, Halverson DS, Debenedetti PG, Prud’homme RK, ACS Symp. Series, 406, 355 (1989)
  28. Debenedetti PG, Metastable liquids: Concepts and principles, Princeton University Press, New Jersy (1996)
  29. Giulietti M, Seckler MM, Derenzo S, Re MI, Cekinski E, Braz. J. Chem. Eng., 18, 423 (2001)
  30. Sun XY, Wang TJ, Wang ZW, Jin Y, J. Supercrit. Fluids, 24(3), 231 (2002)
  31. Sun XY, Wang TJ, Wang ZW, Jin Y, J. Supercrit. Fluids, 24(3), 231 (2002)
  32. Smith RD, Fulton JL, Petersen RC, Kopriva AJ, Wright BW, Anal. Chem., 58, 2057 (1986)