화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.6, 539-543, August, 2008
pH-Triggered Transition of Silk Fibroin from Spherical Micelles to Nanofibrils in Water
E-mail:
Many natural proteins self-assemble in complex ways, either to fulfill their biological function or introduce particular properties, such as high strength and toughness. We report the morphological transition in water from a spherical to rod-like shape of Bombyx mori silk fibroin by reducing the pH. Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering were used to characterize the dilute solutions of silk fibroin in an aqueous environment, and provide direct visualization of the transformation of spherical micelles at pH 6.8 to nanofibrils at pH 4.8. This change in morphology occurred as a result of the stretching entropy due to the formation of β-sheets, which was analyzed using circular dichroism spectroscopy. This study demonstrates the selfassembly of silk fibroin as a function of pH.
  1. Vollrath F, Knight DP, Nature, 410, 541 (2001)
  2. Guhrs KH, Weisshart K, Grosse F, Rev. Mol. Biotechnol., 74, 121 (2000)
  3. Hong ZN, Chasan B, Bansil R, Turner BS, Bhaskar KR, Afdhal NH, Biomacromolecules, 6(6), 3458 (2005)
  4. Oroudjev E, Soares J, Arddlacono S, Thompson JB, Fossey SA, Hansma HG, Proc. Natl. Acad. Sci. USA, 99, 6460 (2002)
  5. Inoue S, Tsuda H, Tanaka T, Kobayashi M, Magoshi Y, Magoshi J, Nano Lett., 3, 1329 (2003)
  6. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J, Proteins: Struct., Funct., Genet., 44, 119 (2001)
  7. Jin HJ, Kaplan DL, Nature, 424, 1057 (2003)
  8. Wong Po Foo C, Bini E, Hensman J, Knight DP, Lewis RV, Kaplan DL, Appl. Phys. A-Mater. Sci. Process., 82, 223 (2006)
  9. Willcox PJ, Gido SP, Muller W, Kaplan DL, Macromolecules, 29(15), 5106 (1996)
  10. Magoshi J, Magoshi Y, Becker MA, Nakamura S, ACS National Meeting, 212, 53 (1996)
  11. Chu B, Laser Light Scattering: Basic Principles and Practice, 2nd Edition, Academic Press (1992)
  12. Song YM, Park CY, Kim CH, Macromol. Res., 14(2), 235 (2006)
  13. Kim UJ, Park JY, Li CM, Jin HJ, Valluzzi R, Kaplan DL, Biomacromolecules, 5(3), 786 (2004)
  14. Masui R, Mikawa T, Kuramitsu S, J. Biol. Chem., 272, 27707 (1997)
  15. Park C, Rhue M, Lim J, Kim C, Macromol. Res., 15(1), 39 (2007)
  16. Hartgerink JD, Benlash E, Stupp SI, Proc. Natl. Acad. Sci. USA, 99, 5133 (2002)
  17. Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH, Macromol. Rapid Commun., 21(11), 788 (2000)
  18. Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Misuno S, Biochem. Biophys. Acta, 92, 1432 (1999)
  19. Yamaguchi K, Kikuchi Y, Takagi T, KiKuchi A, Oyama F, Shimura K, Mizuno S, J. Mol. Biol., 210, 127 (1989)
  20. Chen X, Knight DP, Vollrath F, Biomacromolecules, 3(4), 644 (2002)
  21. Braun FN, Viney C, Int. J. Biol. Macromol., 32, 59 (2003)
  22. Lei LC, Gohy JF, Willet N, Zhang JX, Varshney S, Jerome R, Macromolecules, 37(3), 1089 (2004)
  23. Yamada H, Nakao H, Takasu Y, Tsubouchi K, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 14, 41 (2001)
  24. Yang YH, Shao ZZ, Chen X, Zhou P, Biomacromolecules, 5(3), 773 (2004)