화학공학소재연구정보센터
Macromolecular Research, Vol.16, No.6, 555-560, August, 2008
Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes
E-mail:
A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, H2, CO2, O2, N2 and CH4 were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of CO2/CH4 and H2/CH4 increased with increasing level of -OH incorporation, which affected the diffusion of H2 or the solubility of CO2 in HPIs. For H2/CH4 separation, the difference in the diffusion coefficients of H2 and CH4 was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of CO2 in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.
  1. Stern SA, J. Membr. Sci., 94, 1 (1994)
  2. Koros WJ, Fleming GK, J. Membr. Sci., 83, 1 (1993)
  3. Kawakami H, Mikawa M, Nagaoka S, J. Membr. Sci., 137(1-2), 241 (1997)
  4. Koros WJ, Mahajan R, J. Membr. Sci., 175(2), 181 (2000)
  5. Rhim JW, Hwang HS, Kim DS, Park HB, Lee CH, Lee YM, Moon GY, Nam SY, Macromol. Res., 13(2), 135 (2005)
  6. Kang SW, Kim JH, Char K, Kang YS, Macromol. Res., 13(2), 162 (2005)
  7. Park HB, Suh IY, Lee YM, Chem. Mater., 14, 3034 (2002)
  8. Park HB, Lee YM, Adv. Mater., 17(4), 477 (2005)
  9. Lee CH, Park HB, Chung YS, Lee YM, Freeman BD, Macromolecules, 39(2), 755 (2006)
  10. Song N, Men L, Gao P, Bai Y, Beaudin AMR, Yu G, Wang ZY, Chem. Mater., 16, 3708 (2004)
  11. Qin AJ, Yang Z, Bai FG, Ye C, J. Polym. Sci. A: Polym. Chem., 41(18), 2846 (2003)
  12. Lee JY, Kim JH, Rhee BK, Macromol. Res., 15(3), 234 (2007)
  13. Park SH, Kim KJ, So WW, Moon SJ, Lee SB, Macromol. Res., 11(3), 157 (2003)
  14. Guiver MD, Robertson GP, Dai Y, Bilodeau F, Kang YS, Lee KJ, Jho JY, Won J, J. Polym. Sci. A: Polym. Chem., 40(23), 4193 (2002)
  15. Eastmond GC, Gibas M, Pacynko WF, Paprotny J, J. Membr. Sci., 207(1), 29 (2002)
  16. Mhaske SB, Bhingarkar RV, Sabne MB, Mercier R, Vernekar SP, J. Appl. Polym. Sci., 77(3), 627 (2000)
  17. Leng WN, Zhou YM, Xu QH, Liu JZ, Polymer, 42(18), 7749 (2001)
  18. Kim KJ, Park SH, So WW, Ahn DJ, Moon SJ, J. Membr. Sci., 211(1), 41 (2003)
  19. Likhatchev D, Gutierrezwing C, Kardash I, Veragraziano R, J. Appl. Polym. Sci., 59(4), 725 (1996)
  20. Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Wagner EV, Freeman BD, Cookson DJ, Science, 318, 254 (2007)
  21. Tullos GL, Powers JM, Jeskey SJ, Mathias LJ, Macromolecules, 32(11), 3598 (1999)
  22. Tanaka K, Kita H, Okano M, Okamoto K, Polymer, 33, 585 (1992)
  23. Sperling LH, Introduction to Physical Polymer Science, Second Ed., Wiley, New York (1992)