화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.25, No.5, 1065-1069, September, 2008
A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris
E-mail:,
Based on the fact that Pichia cell growth follows a Monod equation under the condition of methanol concentration limitation, a kinetics model of recombinant methylotrophic yeast Pichia pastoris expressing porcine insulin precursor (PIP) was developed in the quasi-steady state in the induction phase. The model revealed that the relationship between specific growth rate (μ) and substrate methanol concentration was in accord with the Monod equation. The fermentation kinetic parameters maximum specific growth rate (μmax), saturation constant (Ks) and maintenance coefficient (M) were estimated to be 0.101 h.1, 0.252 g l.1, and 0.011 g MeOH g.1 DCW h.1, respectively. The unstructured model was validated in methanol induction phase with different initial cell densities. Results showed that the maximum specific protein production rate (qp.max) of 0.098 mg g.1 DCW h.1 was achieved when μ was kept at 0.016 h.1, and the maximum yield of PIP reached 0.97 g l.1, which was 1.5-fold as that of the control. Therefore, the simple Monod model proposed has proven to be a robust control system for recombinant porcine insulin precursor production by P. pastoris on pilot scale, which would be further applied on production scale.
  1. Frank BH, Pettee JM, Zimmermann RE, Burck PJ, in Proceedings of the seventh American peptide symposium, D. H. Rich and E. Gross, Eds., Pierce Chemical Co., Rockford, IL (1981)
  2. Shin CS, Hong MS, Bae CS, Lee J, Biotechnol. Prog., 13(3), 249 (1997)
  3. Markussen J, Damgaard U, Diers I, Fiil N, Hansen MT, Lassen P, Norris F, Norris K, Schou O, Snel L, Thim L, Voigt HO, Diabetologia, 29, 568A (1986)
  4. Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fill NP, Proc. Natl. Acad. Sci. USA, 83, 6766 (1986)
  5. Wang Y, Liang ZH, Zhang YS, Yao SY, Xu YG, Tang YH, Zhu SQ, Cui DF, Feng YM, Biotechnol. Bioeng., 73(1), 74 (2001)
  6. Cha HJ, Kim KR, Hwang BH, Ahn DH, Yoo YJ, Korean J. Chem. Eng., 24(5), 812 (2007)
  7. Cereghino JL, Cregg JM, Fems Microbiol. Rev., 24, 45 (2000)
  8. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, Yeast, 22, 249 (2005)
  9. Cos O, Ramon R, Montesinos JL, Vallero F, Biotechnol. Bioeng., 95(1), 145 (2006)
  10. Stratton J, Chiruvolu V, Meagher M, in Pichia protocols, D. R. Higgins and J. M. Cregg, Eds., Human Press, Totowa, New Jersey (1998)
  11. Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA, Gene, 190, 55 (1997)
  12. Mattanovich D, Gasser B, Hohenblum H, Sauer M, J. Biotechnol., 113, 121 (2004)
  13. Zhang WH, Bevins MA, Plantz BA, Smith LA, Meagher MM, Biotechnol. Bioeng., 70(1), 1 (2000)
  14. Li ZJ, Zhao QH, Liang H, Jiang SL, Chen T, Grella D, Shearon C, Bottaro DP, Sim BKL, Biotechnol. Lett., 24(19), 1631 (2002)
  15. Zhou XS, Zhang YX, Biotechnol. Lett., 24(17), 1449 (2002)
  16. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K, J. Biosci. Bioeng., 90(3), 280 (2000)
  17. Curvers S, Brixius P, Klauser T, Thommes J, Weuster-Botz D, Takors R, Wandrey C, Biotechnol. Prog., 17(3), 495 (2001)
  18. Ren HT, Yuan JQ, Bellgardt KH, J. Biotechnol., 106, 53 (2003)
  19. Curvers S, Linneman J, Klauser T, Wandrey C, Takors R, Chemie Ingenieur Technik, 73, 1615 (2001)
  20. Guo M, Chu J, Zhang S, Acta Microbiol. Sinica., 41, 617 (2001)
  21. Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F, J. Biotechnol., 116, 321 (2005)
  22. Kang HA, Choi ES, Hong WK, Kim JY, Ko SM, Sohn JH, Rhee SK, Appl. Microbiol. Biotechnol., 53(5), 575 (2000)
  23. Pais JM, Varas L, Valdes J, Cabello C, Rodriguez L, Mansur M, Biotechnol. Lett., 25(3), 251 (2003)
  24. d'Anjou MC, Daugulis AJ, Biotechnol. Bioeng., 72(1), 1 (2001)
  25. Mergler M, Klinner U, Acta Biol. Hung., 52, 265 (2001)