Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.5, 477-483, October, 2008
La0.7Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성
Preparation and Oxygen Permeation Properties of La0.7Sr0.3Co0.2Fe0.8O3.δ Membrane
E-mail:
초록
구연산법을 이용하여 La0.7Sr0.3Co0.2Fe0.8O3-δ 산화물을 합성하였으며, 합성된 분말은 압축 성형 후 1300 ℃에서 소결하여 치밀한 페롭스카이트 분리막을 제조하였다. 구연산법으로 제조한 La0.7Sr0.3Co0.2Fe0.8O3-δ의 전구물질은 TGA와 XRD로 분석하였다. 260∼410 ℃ 온도 영역에서 전구물질의 금속.구연산 복합체가 분해되며 페롭스카이트 산화물이 얻어지나 XRD 분석결과 900 ℃ 이하에서는 SrCO3가 불순물로 존재하였다. 분리막의 전기전도도는 온도가 증가함에 따라 증가하다. 결정격자의 산소 손실로 인해 공기분위기에서는 700 ℃ (Po2 = 0.2 atm)부터, 헬륨분위기에서는 600 ℃ (Po2 = 0.01 atm) 부터 각각 감소하였다. 산소투과량은 온도가 증가할수록 증가하였고, 두께 1.6 mm의 La0.7Sr0.3Co0.2Fe0.8O3.δ 분리막은 950 ℃에서 0.31 cm 3 /cm2 .min의 최대 투과도를 보였다. 산소투과에 대한 활성화 에너지는 750∼950 ℃ 온도 영역에 서 88.4 kJ/mol이었다. 40 h의 투과실험 후에 분리막의 페롭스카이트 결정 구조는 변하지 않았으며 0.3 mol Sr doping 시 2차상이 생성되지 않고 안정하였다.
La0.7Sr0.3Co0.2Fe0.8O3-δ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at 1300 ℃. Precursor of La0.7Sr0.3Co0.2Fe0.8O3-δ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of 260∼410 ℃ but XRD results showed SrCO3 existed as impurity at less than 900 ℃. Electrical conductivity of membrane increased with increasing temperature but then decreased over 700 ℃ in air atmosphere (Po2 = 0.2 atm) and 600 ℃ in He atmosphere (Po2 = 0.01 atm) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of La0.7Sr0.3Co0.2Fe0.8O3-δ membrane with 1.6 mm thickness was about 0.31 cm 3 /cm 2 .min at 950 ℃. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of 750∼950 ℃. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.
- Thambimuthu K, Soltanieh M, Abanades JC, IPCC Special Report on Carbon dioxide Capture and Storage, ed. O. Davidson, B. Metz, 1, 6, Cambridge University Press London (2005)
- Burggraaf AJ, H J, Bouwmeester M, Fundamentals of Inorganic Membrane Science and Technology, ed. A. J. Burggraaf and L. Cot, 4, 435, Elsevier, Amsterdam (1996)
- Park JH, Park SD, Korean J. Chem. Eng., 24(5), 897 (2007)
- Kao CF, Yang WD, Appl. Organomet. Chem., 13, 383 (1999)
- Kim S, Yang YL, Christoffersen R, Jacobson AJ, Solid State Ion., 104(1-2), 57 (1997)
- Park JH, Kim JP, Kwon HT, Soo KJ, Desalination, 233, 73 (2008)
- K. R. Patent 10-2007-0130276 (2007)
- Li SG, Jin WQ, Huang P, Xu NP, Shi J, Lin YS, Hu MZC, Payzant EA, Ind. Eng. Chem. Res., 38(8), 2963 (1999)
- Teraoka Y, Nobunaga T, Yamazoe N, Chem. Lett., 503 (1988)
- Tsai CY, Dixon AG, Ma YH, Moser WR, Pascucci MR, J. Am. Ceram. Soc., 81, 1437 (1998)
- Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ, J. Electrochem. Soc., 143(9), 2722 (1996)
- Qi XW, Lin YS, Swartz SL, Ind. Eng. Chem. Res., 39(3), 646 (2000)