화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.4, 480-486, July, 2008
New amphiphilic polymer nanoparticle-enhanced UF process for removal of organic pollutants and metal ions
E-mail:
This study presents a new ultrafiltration process using amphiphilic polymer nanoparticles. Unlike micelle-enhanced ultrafiltration (MEUF) using surfactant molecules as nano-absorbent for pollutants, our ultrafiltration process employs amphiphilic polyurethane (APU) nanoparticles as a new nano-absorbent for absorbing pollutants in aqueous phase. APU nanoparticles, dispersed in water, have polypropylene oxide-based hydrophobic interior and polyethylene oxide-based hydrophilic exterior, and the same kind of interfacial activity and solubilization performance of surfactants. Ultrafiltration was carried out using dead-end batch cell equipped with the mixed cellulose esters (MCE) ultrafiltration flat membrane (pore size = 0.025 mm). Under the same UF condition, rejection of APU nanoparticles (greater than 95%) was much higher than that of nonionic surfactant, Triton X-100 (lower than 50%). For removal of various organic pollutants (toluene, benzene, 4-nitrophenol, and phenol) from aqueous phase, rejection of organic pollutants varied from 48 to 97% depending on the nature of pollutant. Removal of metal ions (Cs+, Cu2+, Cr3+, Mg2+, and Ni2+) was also examined via UF at various concentrations of APU nanoparticles. Rejection of metal ions was varied from 20 to 95%. The maximum rejection of metal ions could be obtained for Cr3+ (91.4%) and Mg2+ (95%) ions.
  1. Vaseashta A, Dimova-Malinovska D, Sci. Technol. Adv. Mater., 6, 312 (2005)
  2. Liu WT, J. Biosci. Bioeng., 102(1), 1 (2006)
  3. Dunn Jr. RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 20, 257 (1985)
  4. Dunn Jr. RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 22, 763 (1987)
  5. Purkait MK, DasGupta S, De S, J. Membr. Sci., 250(1-2), 47 (2005)
  6. Talens-Alesson FI, Urbanski R, Szymanowski J, Colloid Surf. A, 178, 71 (2001)
  7. Sabate J, Pujola M, Llorens J, J. Colloid Interface Sci., 246(1), 157 (2002)
  8. Jadhav SR, Verma N, Sharma A, Bhattacharya PK, Sep. Purif. Technol., 24(3), 541 (2001)
  9. Choo KH, Han SC, Choi SJ, Jung JH, Chang D, Ahn JH, Benjamin MM, J. Ind. Eng. Chem., 13(2), 163 (2007)
  10. Edwards DA, Adeel Z, Luthy RG, Environ. Sci. Technol., 28, 1550 (1994)
  11. Tester JW, Holgate HR, Armellini FJ, Webley PA, Killiea WR, Barner HE, Hong GT, in: Tedder DW, Pohland FG (Eds.), ACS Symposium Series, 518, American Chemical Society, Washing, DC, 1993
  12. Krebbs-Yuill B, Harwell JH, Sabatini DA, Knox RC, Surfactantenhanced Subsurface Remediation: Emerging Technologies, ACS Symposium Series 594: American Chemical Society, Washington, DC, 1995
  13. Zhao D, Pignatello JJ, White JC, Braida W, Ferrandino F, Water. Resour. Res. 37, 8, 2205 (2001)
  14. Deshpande S, Wesson L, Wade D, Sabatini DA, Harwell JH, Water Res., 34, 1030 (2000)
  15. Pennell KD, Abriolar LM, Weber Jr. WJ, Environ. Sci. Technol., 27, 2332 (1993)
  16. West CC, Harwell JH, Environ. Sci. Technol., 26, 2324 (1992)
  17. Edwards DA, Luthy RG, Liu Z, Environ. Sci. Technol., 25, 127 (1991)
  18. Kim GN, Choi WK, Jung CH, Moon JK, J. Ind. Eng. Chem., 13(3), 406 (2007)
  19. Forster S, Antonietti M, Adv. Mater., 10(3), 195 (1998)
  20. Kim JY, Shim SB, Shin DH, Korea Patent 0420371
  21. Kim JY, Shim SB, Shin DH, Korea Patent 0420372
  22. Tungittiplakorn W, Lion LW, Cohen C, Kim JY, Environ. Sci. Technol., 38, 1605 (2004)
  23. Kim JY, Shim SB, Shim JK, J. Hazard. Mater., B116, 205 (2004)
  24. Budavari S, The Merck Index, 11th ed., Merck & Co., Inc., Rahway, NJ, 1989
  25. Kim JY, Shin DH, Ihn KJ, Macromol. Chem. Phys., 206, 794 (2005)
  26. Kim JY, Kim HM, Shin DH, Ihn KJ, Macromol. Chem. Phys., 207, 925 (2006)