Journal of Industrial and Engineering Chemistry, Vol.14, No.4, 480-486, July, 2008
New amphiphilic polymer nanoparticle-enhanced UF process for removal of organic pollutants and metal ions
E-mail:
This study presents a new ultrafiltration process using amphiphilic polymer nanoparticles. Unlike micelle-enhanced ultrafiltration (MEUF) using surfactant molecules as nano-absorbent for pollutants, our ultrafiltration process employs amphiphilic polyurethane (APU) nanoparticles as a
new nano-absorbent for absorbing pollutants in aqueous phase. APU nanoparticles, dispersed in water, have polypropylene oxide-based hydrophobic interior and polyethylene oxide-based hydrophilic exterior, and the same kind of interfacial activity and solubilization performance
of surfactants. Ultrafiltration was carried out using dead-end batch cell equipped with the mixed cellulose esters (MCE) ultrafiltration flat membrane (pore size = 0.025 mm). Under the same UF condition, rejection of APU nanoparticles (greater than 95%) was much higher than that of
nonionic surfactant, Triton X-100 (lower than 50%). For removal of various organic pollutants (toluene, benzene, 4-nitrophenol, and phenol) from aqueous phase, rejection of organic pollutants varied from 48 to 97% depending on the nature of pollutant. Removal of metal ions (Cs+, Cu2+, Cr3+, Mg2+, and Ni2+) was also examined via UF at various concentrations of APU nanoparticles. Rejection of metal ions was varied from 20 to 95%. The maximum rejection of metal ions could be obtained for Cr3+ (91.4%) and Mg2+ (95%) ions.
Keywords:Amphiphilic polyurethane nanoparticles;Urethane acrylate nonionomer;MEUF;Hydrophobic pollutants;Metal ions
- Vaseashta A, Dimova-Malinovska D, Sci. Technol. Adv. Mater., 6, 312 (2005)
- Liu WT, J. Biosci. Bioeng., 102(1), 1 (2006)
- Dunn Jr. RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 20, 257 (1985)
- Dunn Jr. RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 22, 763 (1987)
- Purkait MK, DasGupta S, De S, J. Membr. Sci., 250(1-2), 47 (2005)
- Talens-Alesson FI, Urbanski R, Szymanowski J, Colloid Surf. A, 178, 71 (2001)
- Sabate J, Pujola M, Llorens J, J. Colloid Interface Sci., 246(1), 157 (2002)
- Jadhav SR, Verma N, Sharma A, Bhattacharya PK, Sep. Purif. Technol., 24(3), 541 (2001)
- Choo KH, Han SC, Choi SJ, Jung JH, Chang D, Ahn JH, Benjamin MM, J. Ind. Eng. Chem., 13(2), 163 (2007)
- Edwards DA, Adeel Z, Luthy RG, Environ. Sci. Technol., 28, 1550 (1994)
- Tester JW, Holgate HR, Armellini FJ, Webley PA, Killiea WR, Barner HE, Hong GT, in: Tedder DW, Pohland FG (Eds.), ACS Symposium Series, 518, American Chemical Society, Washing, DC, 1993
- Krebbs-Yuill B, Harwell JH, Sabatini DA, Knox RC, Surfactantenhanced Subsurface Remediation: Emerging Technologies, ACS Symposium Series 594: American Chemical Society, Washington, DC, 1995
- Zhao D, Pignatello JJ, White JC, Braida W, Ferrandino F, Water. Resour. Res. 37, 8, 2205 (2001)
- Deshpande S, Wesson L, Wade D, Sabatini DA, Harwell JH, Water Res., 34, 1030 (2000)
- Pennell KD, Abriolar LM, Weber Jr. WJ, Environ. Sci. Technol., 27, 2332 (1993)
- West CC, Harwell JH, Environ. Sci. Technol., 26, 2324 (1992)
- Edwards DA, Luthy RG, Liu Z, Environ. Sci. Technol., 25, 127 (1991)
- Kim GN, Choi WK, Jung CH, Moon JK, J. Ind. Eng. Chem., 13(3), 406 (2007)
- Forster S, Antonietti M, Adv. Mater., 10(3), 195 (1998)
- Kim JY, Shim SB, Shin DH, Korea Patent 0420371
- Kim JY, Shim SB, Shin DH, Korea Patent 0420372
- Tungittiplakorn W, Lion LW, Cohen C, Kim JY, Environ. Sci. Technol., 38, 1605 (2004)
- Kim JY, Shim SB, Shim JK, J. Hazard. Mater., B116, 205 (2004)
- Budavari S, The Merck Index, 11th ed., Merck & Co., Inc., Rahway, NJ, 1989
- Kim JY, Shin DH, Ihn KJ, Macromol. Chem. Phys., 206, 794 (2005)
- Kim JY, Kim HM, Shin DH, Ihn KJ, Macromol. Chem. Phys., 207, 925 (2006)