Polymer(Korea), Vol.32, No.6, 509-515, November, 2008
방사선 조사에 의한 초극세 폴리프로필렌 섬유부직포를 이용한 고효율 음이온교환체의 합성
Synthesis of High Affinity Anion Exchanger Using Ultrafine Fibrous PPmb Nonwoven Fabric by Co60 Irradiation Method
E-mail:
초록
Acrylic acid 단량체를 방사선 동시조사법으로 폴리프로필렌 멜트 블로운 섬유에 그래프트 반응시켜 PPmb-g-AAc 공중합체를 제조한 후 아민화 반응을 통하여 아민형 이온교환섬유를 합성하였다. 공중합체의 그래프트율은 acrylic acid 단량체의 농도와 총조사선량이 증가할수록 증가하였으며 acrylic acid 단량체의 농도와 총조사선량이 20 v/v%, 4 kGy일 때 140%로 최대치를 나타내었다. Mohr’s salt의 최적농도는 5.0×10-3 M로 나타났다. 아민화율은 그래프트율이 증가할수록 증가하여 140%일 때 78.8%로 나타났다. 아민화한 PPmb-g-AAc 공중합체의 함수율은 기재보다 1.5배 정도 높게 나타났으며 이온교환용량은 7.3 meq/g으로 상용 이온교환섬유보다 2∼3배 정도 높게 나타내었다. 합성한 APPmb-g-AAc의 BET 측정결과 PPmb, PPmb-g-AAc 및 APPmb-g-AAc 섬유의 경우 공극의 크기와 비표면적이 각각 366.1 Å, 3.71 m2/g와 143.3 Å, 4.94 m2/g 및 40.97 Å, 8.98 m2/g로 공극의 크기는 감소하고 비표면적이 증가하는 경향을 보였다.
The aminated polypropylene melt blown ion exchange fibers were synthesized with acrylic
acid monomer onto polypropylene melt blown fibers by radiation-induced polymerization and subsequent amination. Degree of grafting was increased with increasing the acrylic acid monomer concentration and total dose. The highest degree of grafting was obtained 140% at a monomer concentration of 20v/v% acrylic acid and total dose of 4 kGy. Optimum condition of Mohr’s salt was 5.0×10^(-3)M. Degree of amination was increased with increasing degree of grafting. Water content was about 1.5 times higher than that of trunk polymer. The maximum ion-exchange capacity was 7.3 meq/g which was 2∼3 times higher than a commercial ion exchange fiber. The average pore size was decreased and BET surface area was increased in order of PPmb, PPmb-g-AAc and APPmb-g-AAc. The average pore size and BET surface area of synthesised fibers were 366.1 Å, 3.71 m2/g, 143.3 Å, 4.94 m2/g, 40.97 Å, 8.98 m2/g, respectively.
- Wente VA, Boone EL, Fluharty CD, Manufacture of Superfine Organic Fibers, Naval Research Laboratory, Report No. 4364 (1954)
- Wente VA, Ind. Eng. Chem., 48, 1342 (1956)
- Wadsworth LC, Jones AM, Nonwovens Ind., 17, 44 (1986)
- Robert BR, Keller JP, Harding JW, U.S. Patent 3,849,241 (1974)
- Wadsworth LC, Jones AM, Fibers Ind., 17, 44 (1986)
- Wadsworth LC, Lee YC, Barbuza SD, J. Fibers Res., 2, 43 (1990)
- Dever M, Wadsworth LC, Lee YC, Proc. INDA Tech. Symp., 18, 1 (1990)
- NOVAK BM, Adv. Mater., 5(6), 422 (1993)
- Kim YK, Riu DH, Kim SR, Kim BI, Mater. Lett., 54, 229 (2002)
- Anderson, Richard A, Sokolowski, Robert C, U. S. Patent 4,100,324 (1978)
- Kokai, Japan Patent 55-142757 (1979)
- Hein N, Phu DV, Duy NN, Huy HT, Nucl. Instrum. Methods B, 236, 606 (2005)
- Pan BC, Xiong Y, Su Q, Li AM, Chen JL, Zhang QX, Chemosphere, 51, 953 (2003)
- Santoso F, Albrecht W, Schroeter M, Weigel T, Paul D, Schomacker R, J. Membr. Sci., 223(1-2), 171 (2003)
- Kawai T, Saito K, Sugita K, Kawakami T, Kanno J, Katakai A, Seko N, Sugo T, Radiat. Phys. Chem., 59, 405 (2000)
- Lee DH, Kim SI, Lee MG, Kim KR, Lee SH, Chung HS, Appl. Chem., 2(2), 881 (1998)
- Borcherding H, Hicke HG, Jorcke D, Ulbricht M, Desalination, 149(1-3), 297 (2002)
- Trommsdorff E, Kohle H, Lagally P, Makromol. Chem., 1, 169 (1978)
- Hwang TS, Lee JH, Lee MJ, Polym.(Korea), 25(4), 451 (2001)
- Park HJ, Na CK, J. Colloid Interface Sci., 301(1), 46 (2006)