Polymer(Korea), Vol.32, No.6, 593-597, November, 2008
배기가스로부터 이산화탄소 분리를 위한 SB 이종 블록공중합체/폴리페닐렌 옥사이드 블렌드 기체분리막
Gas Separation Membranes Prepared from Polystyrene-block-Polybutadiene/Poly(phenylene oxide) Blends for Carbon Dioxide Separation from a Flue Gas
E-mail:
초록
배기가스에 포함된 이산화탄소를 분리하기 위해 polystyrene-block-polybutadiene(SB) 이종 블록 공
중합체와 폴리페닐렌 옥사이드(PPO) 블렌드로부터 기체 분리막을 제조하였다. SB/PPO 블렌드에서 폴리스티렌 블록과 PPO는 실험 범위내에서 단상의 블렌드를 형성하였다. SB/PPO 블렌드에서 PPO 함량이 증가하여 40∼50wt% 범위에서 폴리부타디엔 블록은 연속상에서 불연속상으로 폴리스티렌 블록과 PPO로 구성된 상은 불연속상에서 연속상으로 전이가 나타났다. 전이가 관찰되는 블렌드 조성에서 급격한 기체 투과도 감소와 선택도 증가가 관찰되었다. 또 블렌드가 50 wt% 이상의 PPO를 포함할 경우 기계적 강도가 확보되어 실험한 최대 압력인 약 10기압까지 변형없이 우수한 투과도와 선택도를 갖는 기체 분리막 제조가 가능하였다.
To separate carbon dioxide from a flue gas, membranes for gas separation was fabricated
from polystyrene-b-polybutadiene (SB) diblock copolymer blends with poly(phenylene oxide), PPO. SB diblock copolymer formed miscible blends with PPO in the experimental range (lower than or equal to 70 wt% PPO). When the blend contained PPO whose composition is in the range of 40-50 wt%, the discontinuous phase of polybutadiene block in SB diblock copolymer, was changed to discrete phase, while polystyrene blocks containing PPO was changed to the continuous phase. A sudden decrease of the gas permeability and a sudden increase of the gas selectivity was observed at these blend compositions. A gas separation membranes having excellent mechanical properties and exhibiting advantages in gas permeability and selectivity could be fabricated from blends containing more than 50 wt% PPO.
Keywords:polystyrene-block-polybutadiene;poly(phenylene oxide);blend;gas separation membrane;carbon dioxide separation
- Herzog H, Environ. Sci. Technol., 35, 148 (2001)
- White CM, J. Air Waste Manage. Assoc., 53, 645 (2003)
- Davidson O, Metz B, “Special Report on Carbon Dioxide Capture and Storage”, in International Panel on Climate Change, Geneva, Switzerland, 2005
- Davison J, Thambimuthu K, “Technologies for Capture of Carbon Dioxide”, in Proceedings of the Seventh Greenouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme, 2004
- Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321 (2005)
- Favre E, J. Membr. Sci., 294(1-2), 50 (2007)
- Kaldis SP, Skodras G, Sakellaropoulos GP, Fuel Process. Technol., 85(5), 337 (2004)
- Paul DR, Yampolskii YP, Polymeric gas separation membranes, Paul DR, Yampolskii YP, Editors, CRC Press, Inc., Boca Raton, USA, Chap. 1 and 2 (2000)
- Robeson LM, J. Membrane Sci., 62, 165 (1991)
- Robeson LM, J. Membrane Sci., 320, 390 (2008)
- Koros WJ, Paul DR, J. Polym. Sci. Part B, 14, 675 (1976)
- Mulder M, Basic Principles of Membrane Technology, Kluwer Academic Pub., Dordrecht, Netherlands, Chapter 7 (1996)
- Kinning D, Winey K, Thomas E, Macromolecules, 21, 3502 (1983)
- Cheng P, Berney C, Cohen R, Macromolecules, 21, 3442 (1988)
- Hwang JM, Lee KH, Lee DC, Polym.(Korea), 21(5), 745 (1997)
- Morel G, Paul DR, J. Membrane Sci., 10, 273 (1982)
- Moon Y, Kim CK, Polym.(Korea), 23(5), 690 (1999)