- Previous Article
- Next Article
- Table of Contents
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.6, 583-591, December, 2008
직접 개미산 연료전지의 연구동향
R & D Trends on Direct Formic Acid Fuel Cells
E-mail:
초록
최근 휴대용 전자기기 수요의 급증에 따라 기존에 사용되던 2차 전지를 대체할 수 있는 친환경 고효율 연료전지 개발의 필요성이 증대되었다. 이러한 목적으로 개미산을 연료로 이용하는 직접 개미산 연료전지가 부각되고 있다. 식품첨가물로 사용될 정도의 안정성, 전해질을 통과하는 연료의 최소화된 crossover, 큰 기전력 발생에 의한 반응활성 최대화 등이 개미산이 가지고 있는 고유의 장점들이며, 이와 더불어 반응 촉매 및 전지 디자인을 최적화 하려는 노력에 의해 직접 개미산 연료전지의 성능 및 안정성이 향상되고 있다. 이러한 개발을 통해 현재까지 약 300 mW/cm2 이상의 전력밀도를 나타내는 전지 개발이 이루어졌다. 본 총설에서는 개미산 연료전지의 기본 구동 원리와 전지 구조에 대한 소개 및 직접 개미산 연료전지 성능 향상에 영향을 미치는 인자들인 연료극 촉매 및 전해질 개발, 최적화된 전지 구조 디자인 등의 개발 현황 및 앞으로 나아갈 방향에 대해 논의하고자 한다.
Recently, as a demand for the portable device is surged, there are needs to develop a new fuel cell system for replacing the conventionally used secondary battery. For this purpose, it becomes important to develop direct formic acid fuel cell (DFAFC) that uses formic acid as a fuel. The formic acid can offer typical advantages such as excellent non-toxicity of the level to be used as food additive, smaller crossover flux through electrolyte, and high reaction capability caused by high theoretical electromotive force (EMF). With the typical merits of formic acid, the efforts for optimizing reaction catalyst and cell design are being made to enhance performance and long term stability of DFAFC. As a result, to date, the DFAFC having the power density of more than 300 mW/cm2 was developed. In this paper, basic performing theory and configuration of DFAFC are initially introduced and future opportunities of DFAFC including the development of catalyst for the anode electrode and electrolyte, and design for the optimization of cell structure are discussed.
- Brummer SB, J. Phys. Chem., 69, 1365 (1965)
- Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 44, 1 (1973)
- Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 45, 205 (1973)
- Clavlier J, Parsons R, Durand R, Lamy C, Leger JM, J.Electroanal. Chem. Interfacial Electrochem., 124, 321 (1981)
- Lamy C, Leger JM, J. Chim. Phys. Phys.-Chem. Biol., 88, 1649 (1991)
- Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 4, 239 (1973)
- Gasteiger HA, Markovic N, Ross PN, Cairns EJ, Electrochim. Acta, 39(11-12), 1825 (1994)
- Taylor AH, Kirkland S, Brummer SB, Trans. Faraday Soc., 67, 819 (1971)
- Motoo S, Watanabe M, Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 69, 429 (1976)
- Watanabe M, Horiuchi H, Motoo S, J. Electroanal. Chem. Interfacial Electrochem., 250, 117 (1988)
- Capon A, Parsons R, J. Electroanal. Chem. Interfacial Electrochem., 65, 285 (1975)
- Llorca MJ, Feliu JM, Aldaz A, Clavilier J, J. Electroanal. Chem., 13, 6287 (1997)
- Baldauf M, Kolb DM, J. Phys. Chem., 100(27), 11375 (1996)
- Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A, Electrochem. Comm., 4, 599 (2002)
- Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83 (2002)
- Ha S, Rice CA, Masel RI, Wieckowski A, J. Power Sources, 112(2), 655 (2002)
- Weber M, Wang JT, Wasmus S, Savinell RF, J. Electrochem. Soc., 143(7), L158 (1996)
- Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35 (2003)
- Rice C, Ha S, Masel RI, Wieckowski A, J. Power Sources, 115(2), 229 (2003)
- Yu X, Pickup PG, J. Power Sources, 182, 124 (2008)
- Choi JH, Jeong KJ, Dong Y, Han J, Lim TH, Lee JS, Sung YE, J. Power Sources, 163(1), 71 (2006)
- Zhou XC, Xing W, Liu CP, Lu TH, Electrochem. Commun., 9, 1469 (2007)
- Uhm SY, Chung ST, Lee JY, Electrochem. Commun., 9, 2027 (2007)
- Casado-Rivera E, Volpe DJ, Alden L, Lind C, Downie C, Vazquez-Alvarez T, Angelo ACD, DiSalvo FJ, Abruna HD, J. Am. Chem. Soc., 126(12), 4043 (2004)
- Alden LR, Han DK, Matsumoto F, Abruna HD, Chem. Mater., 18, 5591 (2006)
- Tripkovic AV, Popovic KD, Stevanovic RM, Socha R, Kowal A, Electrochem. Commun., 8, 1492 (2006)
- Herrero E, Fernandez-Vega A, Feliu JM, Aldez A, J. Electroanal. Chem., 350, 73 (1993)
- Xia X, Iwasita T, J. Electrochem. Soc., 140, 2559 (1993)
- Ha S, Larsen R, Zhu Y, Masel RI, Fuel Cells, 4, 337 (2004)
- Larsen R, Ha S, Zakzeski J, Masel RI, J. Power Sources, 157(1), 78 (2006)
- Zhu YM, Khan Z, Masel RI, J. Power Sources, 139(1-2), 15 (2005)
- Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8 (2004)
- Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, J. Phys. Chem. B, 110(27), 13393 (2006)
- Tian M, Conway BE, J. Electroanal. Chem., 581(2), 176 (2005)
- Baldauf M, Kolb DM, J. Phys. Chem., 100(27), 11375 (1996)
- Jung WS, Han JH, Ha S, J. Power Sources, 173(1), 53 (2007)
- Lovic JD, Tripkovic AV, Gojkovic SLJ, Popovic KD, Tripkovic DC, Olszewski P, Kowal A, J. Electroanal. Chem., 571, 294 (2005)
- Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28 (2005)
- Zhang LL, Lu TH, Bao JC, Tang YW, Li C, Electrochem. Commun., 8, 1625 (2006)
- Zhang LL, Tang YW, Bao JC, Lu TH, Li C, J. Power Sources, 162(1), 177 (2006)
- Jeong KJ, Miesse CA, Choi JH, Lee J, Han J, Yoon SP, Nam SW, Lim TH, Lee TG, J. Power Sources, 168(1), 119 (2007)
- Song CJ, Khanfar M, Pickup PG, J. Appl. Electrochem., 36(3), 339 (2006)
- Wang X, Hu JM, Hsing IM, J. Electroanal. Chem., 562(1), 73 (2004)
- Yeom J, Jayashree RS, Rastogi C, Shannon MA, Kenis PJA, J. Power Sources, 160(2), 1058 (2006)
- Yeom J, Mozsgai GZ, Flachsbart BR, Choban ER, Asthana A, Shannon MA, Kenis PJA, Sens. Actuators B: Chem., 107, 882 (2005)
- Chen FL, Chang MH, Lin MK, Electrochim. Acta, 52(7), 2506 (2007)
- Ha S, Adams B, Masel RI, J. Power Sources, 128(2), 119 (2004)