Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.6, 674-679, December, 2008
TiO2 담지 스테인리스 강 섬유 광촉매 제조 및 광촉매 활성 평가
Fabrication of TiO2 Impregnated Stainless Steel Fiber Photocatalyts and Evaluation of Photocatalytic Activity
E-mail:
초록
수처리에 있어서 분말 TiO2 광촉매가 안고 있는 문제점을 극복하기 위하여 스테인리스 강 섬유를 지지체로 한 TiO2 담지 광촉매(TiO2/SSF)를 제조하였다. 초음파 세척기를 이용하여 담지된 TiO2의 부착강도를 살펴보았으며, 메틸렌블루와 포름산 분해실험을 통하여 광촉매 활성을 평가하였고, 대장균과 비브리오균에 대한 살균실험을 통하여 살균능력을 평가하였다. 담지된 TiO2는 30 min간의 초음파 처리 후에도 95% 이상이 남아 있을 정도로 강한 부착력을 보였으며, UV 하에서 60%의 메틸렌블루와 38%의 포름산을 1 h 만에 각각 분해시키는 광촉매 활성을 보였고, 대장균과 비브리 오균에 대하여 99.9% 이상의 높은 살균능력을 보였다. 포름산 분해의 경우에는 산화제를 첨가하면 분해율이 증가하였으며, 특히 과산화수소를 첨가할 경우에는 분해율이 1 h 만에 80%로 증가하였다.
TiO2 impregnated stainless steel fiber photocatalysts (TiO2/SSF) were fabricated to overcome inherent problems of powdery TiO2 photocatalysts in water treatment. Adhesion strength of the impregnated TiO2 was examined using an ultrasonic-cleaner. Photocatalytic activity was evaluated through decomposition experiment of methylene blue and formic acid. Bactericidal efficiency was evaluated through sterilization experiment of E. Coli and Vibrio Vulnificus. Adhesion strength of the impregnated TiO2 was so high that more than 95% was left over even after the treatment in an ultrasonic-cleaner for 30 min. Methylene blue and formic acid were decomposed as much as 60% and 38% of the initial concentration and more than 99.9% of E.
Coli and Vibrio Vulnificus were killed after 1 hour exposure to the prepared photocatalyst under UV irradiation. In the case of decomposition of formic acid, decomposition ratio increased if oxidants were added. Especially the decomposition ratio increased as high as 80% when hydrogen peroxide was added as an oxidant.
Keywords:water treatment;TiO2 photocatalyst supported on stainless steel fiber;photocatalytic efficiency
- Rook JJ, J. Water Treat. Exam., 23, 234 (1974)
- Brillas E, Mur E, Sauleda R, Sanchez L, Peral J, Domenech X, Casado J, Appl. Catal. B: Environ., 16(1), 31 (1998)
- Ching RH, Hung YS, J. Hazar. Mater., 41, 47 (1995)
- Vencatadri R, Peter RW, Haz. Waste & Haz. Mater., 10, 107 (1993)
- Minero C, Pelizzetti E, Pichat P, Sega M, Vincenti M, Environ. Sci. Technol., 29, 2226 (1995)
- Honda K, Fujishima A, Nature, 238, 30 (1972)
- Kawai T, Sakata T, Nature, 286, 474 (1980)
- Wei C, Lin WY, Zainal Z, Willams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K, Environ. Sci. Technol., 28, 934 (1994)
- Kuboto Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A, Br. J. Cancer, 70, 1107 (1994)
- Takahashi Y, Mita K, Toyoki H, Kume MJ, Mater. Sci., 24, 243 (1989)
- Kato K, Tsuzuki A, Torii Y, Taoda H, Kato T, Butsugan Y, J. Mater. Sci., 30(3), 837 (1995)
- Pruden AL, Ollis DF, J. Catal., 82, 404 (1983)
- Pruden AL, Ollis DF, Environ. Sci. Technol., 17, 628 (1983)
- Cho DL, Min H, Kim JH, Cha GS, Kim GS, Kim BH, Ohk SH, J. Ind. Eng. Chem., 13(3), 434 (2007)
- Sunada K, Watanabe T, Hashimoto K, J. Photochem. Photobiol. A: Chemistry, 156, 227 (2003)
- Barringer EA, Bowen HK, Langmuir, 1, 414 (1985)
- Sonawane RS, Hegde SG, Dongare MK, Mater. Chem. and Phy., 77, 744 (2002)
- Kim JH, Cho DL, Choi BC, Song SJ, Proc. Application of TiO2 Photocatalyst in Water Treatment, 7th Intern. Confer. on Ecomater., 7. 3-8, Singapore (2005)
- Oliver JD, Vibrio vulnificus. In: Foodborne Bacterial Pathogens, ed. M. P. Doyle, 569. Marcel Dekker, New York (1989)