Polymer(Korea), Vol.20, No.3, 514-521, May, 1996
폴리우레탄막 표면에의 화학관능기의 도입
Introduction of Functional Groups on the Surface of Polyurethane Membranes
초록
Poly(tetramethylene glycol) (PTMG)과 4,4'-diphenylmethane diisocyanate (MDI)로 부터 폴리우레탄 프리폴리머를 합성하고, 이 프리폴리머를 에틸렌디아민과 반응시켜 폴리우레탄 (PU)을 합성하였다. 합성한 PU 필름을 산소 플라즈마 방전처리하여 과산화물을 생성시키고 이것을 개시점으로하여 1-acryloyl benzotriazole(AB)을 그라프트 중합하였다. 표면에 그라프트된 AB의 농도는 UV법으~로 조사한 열과 1.22μmo1/㎠이었다. PU-AB를 아민화합물과 치환반응하여 수산기, 카~르본산기, 아미노기, 술폰산기를 도입할 수 있었고 그 농도는 0.53-0.56 μmo1/㎠이었다. 화학관능기를 도입한 PU의 표면분석은 attenuated total reflection Fourier transform infrared (ATR-FT-IR) 및 electron spectroscopy for chemical analysis (ESCA)에 의해 수행하였다. 접촉각 측정기를 이용하여 표면개질한 PU표면의 물 접촉각을 측~정한 결과 기능그룹의 도입에 의해 친수성이 증가함을 알았다.
Polyurethane prepolymer was synthesized from poly(tetramethylene glycol) (PTMG) and 4,4'-diphenylmethane diisocyanate (MDI), and reacted with ethylene diamine to obtain polyurethane (PU). PU films were treated with oxygen plasma glow discharge to produce peroxides on the surface and the peroxides formed were then used as an initiating site for graft polymerization of 1-acryloyl benzotriazole (AB). The concentration of AB grafted on the surfaces, measured by UV spectroscopy, was 1.22μ㏖/㎠. The functional groups such as hydroxy (-OH), amine (-NH2), carboxylic acid (-COOH), and sulfonic acrid (-SO3H) were introduced on the PU surfaces by substitution reaction of PU-AB with the functional groups and the concentration of functional groups introduced were in the range of 0.53-0.56 μ㏖/㎠. The chemical properties cf the surfaces of functional group containing PUs were examined by attenuated total reflection Fourier transform infrared (ATR-FT-lR ) and electron spectroscopy for chemical analysis (ESCA). The water contact angles of the surface-modified PU films were measured by a contact angle goniometer and the results showed that the hydrophillcity of PU-AB was increased by the introduction of functional groups.
- Wilson JE, Polym. Plast. Technol. Eng., 16, 119 (1981)
- Boretos JW, Pure Appl. Chem., 52, 1851 (1980)
- Barbucci R, Benvenuti M, Casini G, Ferruti P, Nocentini M, Makromol. Chem., 186, 2291 (1985)
- Gardner DL, Sharp WV, Ewing KL, Finelli AF, Trans. Am. Soc. Artif. Intern. Organs., 15, 7 (1969)
- Merrill EW, Salzman EW, Lipps BJ, Gilliland ER, Austen WG, Joison J, Trans. Am. Soc. Artif. Intern. Organs, 12, 139 (1966)
- Kramer RS, Vasco JS, Morrow AG, J. Thorac. Cardiovasc. Surg., 53, 130 (1967)
- Rembaum A, Yen SPS, Ingram M, Newton JF, Hu CL, Frasher WG, Barbons BH, Biomat. Med. Devices. Artif. Organs., 1, 99 (1973)
- Ito Y, Sisido M, Imanishi Y, J. Biomed. Mater. Res., 20, 1017 (1986)
- Ito Y, Sisido M, Imanishi Y, J. Biomed. Mater. Res., 23, 191 (1989)
- Han DK, Jeong SY, Kim YH, J. Biomed. Mater. Res. Appl. Biomater., 2, 211 (1989)
- Lin SC, Jacobs A, Kim SW, J. Biomed. Mater. Res., 25, 791 (1991)
- Byun KH, Kang IK, Lim HS, Lee JH, Lee HB, Polym.(Korea), 17(2), 186 (1993)
- Jung HW, Lee JH, Kang IK, Polym.(Korea), 19(1), 117 (1995)
- Kang IK, Kwon BK, Lee JH, Lee HB, Biomaterials, 14, 787 (1993)
- Kang IK, Kwon OH, Lee YM, Sung YK, Biomaterials, 17, 841 (1996)
- Ferruti P, Fere A, Cottica G, J. Polym. Sci. A: Polym. Chem., 12, 553 (1974)
- Boenig HV, "Plasma Science and Technology," Munchen, Carl Hanser (1982)
- Suzuki M, Kishida A, Iwata H, Ikada Y, Macromolecules, 19, 1804 (1986)
- Clark DK, Dilks A, J. Polym. Sci. A: Polym. Chem., 17, 957 (1979)