화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.20, No.4, 197-211, December, 2008
A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions
E-mail:
The purpose of this study is mainly directed towards present of viewpoints on critical and commentary analysis on blood rheology, blood viscosity models, and physiological flow conditions. Understanding these basics is fundamental to meet the need for a sufficient and reliable CFD model of blood. Most of the used viscosity models on this manner have determined from parameter fitting on experimental viscosity data. Availability of experimental data from literature to define viscosity models of CFD analysis should be accurately chosen and treated in order to avoid any errors. Several basic gaps that limit the CFD model results are identified and given opportunities for future research.
  1. Abraham F, Behr M, Heinkenschloss M, Comput. Meth. Biomech. Biomed. Eng., 8, 201 (2005)
  2. Ai L, Vafai K, Numer. Heat Tran. A, 47, 955 (2005)
  3. Anand M, Rajagopal KR, Int. J. Cardiovasc. Med. Sci., 4, 59 (2004)
  4. Arjomandi H, Barcelona SS, Gallocher SL, Vallejo M, 2003, Biofluid dynamics of the human circulatory system, Proceedings of the congress on: "biofluid dynamics of the human body systems". Biomedical engineering institute, Florida international university, Miami - Florida, USA
  5. Bagchi P, Biophys. J., 92, 1858 (2007)
  6. Bagchi P, Johnson PC, Popel AS, J. Biomech. Eng., 127, 1070 (2005)
  7. Ballyk PD, Steinman DA, Ethier CR, Biorheology, 31, 565 (1994)
  8. BARNES HA, J. Non-Newton. Fluid Mech., 56(3), 221 (1995)
  9. Barnes HA, J. Non-Newton. Fluid Mech., 94(2-3), 213 (2000)
  10. Barnes HA, Hutton JF, Walters K, 1989, An introduction to rheology, Elsevier, Amsterdam
  11. Baskurt OK, Meiselman HJ, Biorheology, 34, 235 (1977)
  12. Baskurt OK, Meiselman HJ, Semin. Thromb. Hemost., 29, 435 (2003)
  13. Batchelor GK, J. Fluid Mech., 83, 97 (1977)
  14. Baumler H, Neu B, Donath E, Kiesewetter H, Biorheology, 36, 439 (1999)
  15. Bishop JJ, Popel AS, Intaglietta M, Johnson PC, Biorheology, 38, 263 (2001)
  16. Braun DB, Rosen MR, 2000, Rheology modifiers handbook: practical use and application, Noyes publications
  17. Brinkman HC, J. Chem. Phys., 20, 571 (1952)
  18. Bronzino JD, 2006, The biomedical engineering handbook, Third edition, CRC
  19. Broughton G, Squires L, J. Phys. Chem., 42, 253 (1938)
  20. Buchanan JR, Kleinstreuer C, Comer JK, Comput. Fluid, 29, 695 (2000)
  21. Buchanan JR, Kleinstreuer C, Hyun S, Truskey GA, J. Biomech., 36, 1185 (2003)
  22. Carpinlioglu MO, Gundogdu MY, Flow. Meas. Instrum., 12, 163 (2001)
  23. Chan WY, Ding Y, Tu JY, ANZIAM Journal, 47, C507 (2007)
  24. Chen HQ, Zhong GH, Li L, Wang XY, Zhou T, Chen ZY, Biorheology, 28, 177 (1991)
  25. Chen J, Lu X, Wang W, J. Biomech., 39, 1983 (2006)
  26. Chien S, Science, 168, 977 (1970)
  27. Chien S, Usami S, Dellenback RJ, Gregersen MI, Am. J. Physiol., 219, 143 (1970)
  28. Cho YI, Kensey KR, Biorheology, 28, 241 (1991)
  29. Chong JS, Christiansen EB, Baer AD, J. Appl. Polymer Sci., 15, 2007 (1971)
  30. Cosgrove T, 2005, Colloid science: principles, methods and applications, Blackwell publishing limited
  31. Coussot P, 2005, Rheometry of pastes, suspensions, and granular materials: applications in industry and environment, Wiley-Interscience
  32. Cristini V, Kassab GS, Ann. Biomed. Eng., 33, 1724 (2005)
  33. Crowley TA, Pizziconi V, Lab Chip, 5, 922 (2005)
  34. De Gruttola S, Boomsma K, Poulikakos D, Artif. Organs, 29, 949 (2005)
  35. Dintenfass L, Nature, 219, 956 (1968)
  36. Dupin MM, Halliday I, Careand CM, Alboul L, Munn LL, Phys. Rev. E, 75, 066707 (2007)
  37. Easthope P, Brooks DE, Biorheology, 17, 235 (1980)
  38. Eilers H, Kolloid-Z, 97, 313 (1941)
  39. Einstein A, Ann. Phys., 339, 591 (1911)
  40. Frankel NA, Acrivos A, Chem. Eng. Sci., 22, 847 (1967)
  41. Fung YC 1993 Biomechanics: mechanical properties of living tissues, 2nd ed. Springer-Verlag, New York
  42. Gijsen FJH, van de Vosse FN, Janssen JD, Biorheology, 35, 263 (1998)
  43. Gijsen FJH, Allanic E, van de Vosse FN, Janssen JD, J. Biomech., 32, 705 (1999)
  44. Gundogdu MY, Carpinlioglu MO, JSME Int. J., 42, 384 (1999)
  45. Gundogdu MY, Carpinlioglu MO, JSME Int. J., 42, 398 (1999)
  46. Hatschek E, Kolloid-Z, 8, 34 (1911)
  47. Huang CR, Pan WD, Chen HQ, Copley AL, Biorheology, 24, 795 (1987)
  48. Huang CR, Chen HQ, Pan WD, Shih T, Kristol DS, Copley AL, Biorheology, 24, 803 (1987)
  49. Janzen J, Elliott TG, Carter CJ, Brooks DE, Biorheology, 37, 225 (2000)
  50. Jeffery GB, Proc. Roy. Soc. Lond. A, 102, 161 (1922)
  51. Johnston BM, Johnston PR, Corney S, Kilpatrick D, J. Biomech., 37, 709 (2004)
  52. Joye DD, J. Colloid Interface Sci., 267(1), 204 (2003)
  53. Kang IS, Korea-Aust. Rheol. J., 14(2), 77 (2002)
  54. Kim S, Cho YI, Jeon AH, Hogenauer B, Kensey KR, J. Non-Newton. Fluid Mech., 94(1), 47 (2000)
  55. Kitano T, Kataoka T, Shirota T, Rheol. Acta, 20, 207 (1981)
  56. Krieger IM, Adv. Colloid Interface Sci., 3, 111 (1972)
  57. Krieger IM, Dougherty TJ, T. Soc. Rheol., 3, 137 (1959)
  58. Lee SW, Steinman DA, J. Biomech. Eng., 129, 273 (2007)
  59. Leondes CT, 2000, Biomechanical systems: techniques and applications, volume IV: biofluid methods in vascular and pulmonary systems: techniques and applications: 4 CRC Press
  60. Lew HS, Biophys. J., 9, 235 (1969)
  61. Liu Y, Zhang L, Wang X, Liu WK, Int. J. Numer. Meth. Fluid, 46, 1237 (2004)
  62. Liu Y, Liu WK, J. Comput. Phys., 220, 139 (2006)
  63. Long DS, Smith ML, Pries AR, Ley K, Damiano ER, PNAS, 101, 10060 (2004)
  64. Luo XY, Kuang ZB, J. Biomech., 25, 929 (1992)
  65. Malkin AY, 1994, Rheology fundamentals, ChemTec Publishing
  66. Maron SH, Pierce PE, J. Colloid Interface Sci., 11, 80 (1956)
  67. Mazumdar JN, 1998, Biofluid mechanics, World Scientific
  68. Meiselman HJ, Baskurt OK, Clin. Hemorheol. Micro., 35, 37 (2006)
  69. Merrill EW, Cokelet GC, Britten A, Wells RE, Circ. Res., 13, 48 (1963)
  70. Mooney MJ, J. Colloid Interface Sci., 6, 162 (1951)
  71. Morris CL, Rucknagel DL, Shukla R, Gruppo RA, Smith CM, Blackshear P, Microvasc. Res., 37, 323 (1989)
  72. Neofytou P, Tsangaris S, Int. J. Numer. Meth. Fluid, 51, 489 (2006)
  73. Nubar Y, Biophys. J., 11, 252 (1971)
  74. O'Callaghan S, Walsh M, McGloughlin T, Med. Eng. Phys., 28, 70 (2006)
  75. Owens RG, J. Non-Newton. Fluid Mech., 140(1-3), 57 (2006)
  76. Pal R, J. Biomech., 36, 981 (2003)
  77. Pal R, Rhodes E, J. Rheol., 33, 1021 (1989)
  78. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR, Phys. Fluid., 4, 30 (1992)
  79. Picart C, Piau JM, Galliard H, Carpentier P, J. Rheol., 42(1), 1 (1998)
  80. Picart C, Piau JM, Galliard H, Carpentier P, Biorheology, 35, 335 (1998)
  81. Popel AS, Johnson PC, Annu. Rev. Fluid Mech., 37, 43 (2005)
  82. Quemada D, Rheol. Acta, 17, 632 (1978)
  83. Rajagopal KR, Srinivasa AR, J. Non-Newton. Fluid Mech., 88(3), 207 (2000)
  84. Rampling MW, Meiselman HJ, Neub B, Baskurt OK, Biorheology, 41, 91 (2004)
  85. Rao MA, 1999, Rheology of fluids and semisolid foods: principles and applications, Springer - Verlag
  86. Richardson EG, Kolloid-Z, 65, 32 (1933)
  87. Rojas HAG, Med. Eng. Phys., 29, 491 (2007)
  88. Roscoe R, Br. J. Appl. Phys., 3, 267 (1952)
  89. Rovedo CO, Viollaz PE, Suarez C, J. Dairy Sci., 74, 1497 (1991)
  90. Schmid-Schonbein H, Wells R, Science, 165, 288 (1969)
  91. Schramm LL, 2005, Emulsions, foams, and suspensions: fundamentals and applications, Wiley-VCH
  92. Sharan M, Popel AS, Biorheology, 38, 415 (2001)
  93. Sibree JO, Trans. Faraday Soc., 27, 161 (1931)
  94. Snabre P, Mills P, J. Phys. III, 6, 1832 (1996)
  95. Steffe JF, 1996, Rheological methods in food process engineering, 2nd ed. Freeman Press
  96. Steinman DA, Ann. Biomed. Eng., 30, 483 (2002)
  97. Steinman DA, Curr. Drug Targets Cardiovasc. Haematol. Disord., 4, 183 (2004)
  98. Steinman DA, Taylor CA, Ann. Biomed. Eng., 33, 1704 (2005)
  99. Sugiura Y, Biorheology, 25, 107 (1988)
  100. Taylor GI, Proc. Roy. Soc. Lond. A, 138, 41 (1932)
  101. Thomas DG, J. Colloid Interface Sci., 20, 267 (1965)
  102. Thurston GB, Biophys. J., 12, 1205 (1972)
  103. Thurston GB, Biorheology, 16, 149 (1979)
  104. Thurston GB, Henderson NM, Jeng M, Clin. Hemorheol. Micro., 30, 61 (2004)
  105. Thurston GB, Henderson NM, Biorheology, 43, 729 (2006)
  106. Toda K, Furuse H, J. Biosci. Bioeng., 102(6), 524 (2006)
  107. Valencia A, Zarate A, Galvez M, Badilla L, Int. J. Numer. Meth. Fluid, 50, 751 (2006)
  108. van de Vosse FN, de Hart J, van Oijen CHGA, Bessems D, Gunther TWM, Segal A, Wolters BJBM, Stijnen JMA, Baaijens FPT, J. Eng. Math., 47, 335 (2003)
  109. Vand V, J. Phys. Colloid Chem., 52, 277 (1948)
  110. Vocadlo JJ, Paper, D4, 49 (1976)
  111. Wang X, Stoltz JF, Clin. Hemorheol., 14, 237 (1994)
  112. Wildemuth CR, Williams MC, Rheol. Acta, 23, 627 (1984)
  113. Yeleswarapu KK, Kameneva MV, Rajagopal KR, Antaki JF, Mech. Res. Comm., 25, 257 (1998)
  114. Zhang J, Johnson PC, Popel AS, Phys. Biol., 4, 285 (2007)
  115. Zhang J, Johnson PC, Popel AS, J. Biomech., 41, 47 (2008)
  116. Zhang JB, Kuang ZB, J. Biomech., 33, 355 (2000)
  117. Zydney AL, Oliver JD, Colton CK, J. Rheol., 35, 1639 (1991)