화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.1, 48-56, January, 2009
Kinetic study and hydrogen peroxide consumption of phenolic compounds oxidation by Fenton’s reagent
E-mail:
Synthetic solutions of phenol, o-, m- and p-cresol were oxidised by using Fenton’s reagent. The application of substoichiometric dosage of H2O2 led to the formation of intermediate compounds, continuing later the oxidation to complete oxidation. An important objective was to analyze the effect of hydrogen peroxide dosage applied and the reaction pH together with the iron oxidation state on the degradation level. A kinetic model was derived from a reaction mechanism postulated which was used to analyze the results of the experiments. Another aim was to analyze the hydrogen peroxide consumption. Noteworthy results include an increase in oxidant consumption to intensify phenol removal. Furthermore, oxidant consumption was analyzed through the ratio H2O2 to phenol removed and the average specific rate of removal (ASRR). By analyzing these two parameters it has been possible to ascertain the most favorable strategy for an efficient application of H2O2.
  1. Ko CH, Fan C, Chiang PN, Wang MK, Lin KC, J. Hazard. Mater., 149(2), 275 (2007)
  2. Sklyar V, Epov A, Gladchenko M, Danilovich D, Kalyuzhnyi S, Appl. Biochem. Biotechnol., 109(1-3), 253 (2003)
  3. Esplugas S, Gimenez J, Contreras S, Pascual E, Rodriguez M, Water Res., 36, 1034 (2002)
  4. Kim YO, Nam HU, Park YR, Lee JH, Park TJ, Lee TH, Korean J. Chem. Eng., 21(4), 801 (2004)
  5. Rao L, Kanmani S, Indian J. of Environ. Prot., 26, 619 (2006)
  6. Sedlak DL, Andren AW, Environ. Sci. Technol., 25, 777 (1991)
  7. Pignatello JJ, Environ. Sci. Technol., 26, 944 (1992)
  8. Bishop DF, Stern G, Fleischman M, Marshall LS, Ind. Eng. Chem. Process Design Dev., 7, 110 (1968)
  9. Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17, 513 (1988)
  10. Carvalho RH, Lemos F, Lemos MANDA, Vojinovic V, Fonseca LP, Cabral JMS, Bioprocess Biosyst. Eng., 29, 99 (2006)
  11. Kang N, Lee D, Yoon J, Chemosphere, 47, 915 (2002)
  12. Lunak S, Sedlak P, J. of Photoch. Photobio. A, 68, 1 (1992)
  13. Zazo JA, Casas JA, Molina CB, Quintanilla A, Rodriguez JJ, Environ. Sci. Technol., 41, 7164 (2007)
  14. Hong SH, Kwon BH, Lee JK, Kim IK, Korean J. Chem. Eng., 25(1), 46 (2008)
  15. Kolthoff IM, Medalia AI, J. Am. Chem. Soc., 71, 3777 (1949)
  16. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S, Appl. Catal. B: Environ., 47(4), 219 (2004)
  17. Yavuz Y, Koparal AS, Ogutveren UB, Chem. Eng. Technol., 30(5), 583 (2007)
  18. Sanz J, Lombrana JI, De Luis A, Ortueta M, Varona F, Environ. Chem. Lett., 1, 45 (2003)
  19. Eisenberg GM, Ind. Eng. Chem., 15, 327 (1942)
  20. Guittonneau S, de Laat J, Dore M, Duguet JP, Bonnel C, Environ. Technol. Lett., 9, 1115 (1988)
  21. Masschelein WJ, Denis M, Lendent R, Water and Sewage Works, 8, 69 (1977)
  22. Striolo P, Debelle H, Foussard JN, Tribune de l’eau., 556 (1992)
  23. Anbar M, Meyerstein D, Neta P, J. Phys. Chem. A, 70, 2660 (1966)
  24. Litvintsev IY, Mikhailyuk AI, Sapunov VN, Kinet. Catal., 36, 482 (1995)
  25. Benitez FJ, Beltranheredia J, Gonzalez T, Real F, Ind. Eng. Chem. Res., 34(11), 4099 (1995)
  26. de Luis A, Lombrana JI, Menendez A, J. Adv. Oxid. Technol., 11, 21 (2008)
  27. Montaser YG, Hartel G, Mayer R, Haseneder R, Waste Manage., 21, 41 (2001)
  28. Kavitha V, Palanivelu K, Chemosphere, 55, 1235 (2004)
  29. Martinez F, Calleja G, Melero JA, Molina R, Appl. Catal. B: Environ., 70(1-4), 452 (2007)
  30. Kavitha V, Palanivelu K, Water Res., 39, 3062 (2005)
  31. de Asin K, Dutta BK, Bhattacharjee S, Environ. Prog., 25, 64 (2006)
  32. Nicell JA, Wright H, Enzyme Microb. Technol., 21(4), 302 (1997)
  33. Glaze WH, Lay Y, Kang JW, Ind. Eng. Chem. Res., 34(7), 2314 (1995)
  34. Karpel N, Dore M, Wat. Res., 31, 1383 (1997)
  35. Lombrana JI, Varona F, Martinez C, de Luis A, Recent Res. Devel. In Chemical Engg., 1, 41 (1997)