화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.1, 79-85, January, 2009
Simultaneous biofiltration of H2S, NH3 and toluene using cork as a packing material
E-mail:
Simultaneous removal of ternary gases of NH3, H2S and toluene in a contaminated air stream was investigated over 185 days in a biofilter packed with cork as microbial support. Multi-microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for H2S removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) was 40-120 seconds and the inlet feed concentration was 50-180 ppmv for NH3, 30-160 ppmv for H2S and 40-130 ppmv for toluene, respectively. The observed removal efficiency was 45-100% for NH3, 96-100% for H2S, and 10-99% for toluene, respectively. Maximum elimination capacity was 5.5 g/m3/hr for NH3, >20.4 g/m3/hr for H2S and 4.5 g/m3/hr for toluene, respectively. During longterm operation, the removal efficiency of toluene gradually decreased, mainly due to depositions of elemental sulfur and ammonium sulfate on the cork surface. The results of microbial analysis showed that nearly the same population density was observed on the surfaces of cork chips collected at each sampling point. Kinetic model analyses showed that there were no particular evidences of interactions or inhibitions among the microorganisms.
  1. Devinny JS, Deshusses MA, Webster TS, Biofiltration for air pollution control, CRC Press, Boca Raton, FL, USA (1998)
  2. Moe WM, Irvine RL, J. Env. Eng., 126, 826 (2000)
  3. Torkian A, Dehghanzadeh R, Hakimjavadi M, J. Chem. Technol. Biotechnol., 78(7), 795 (2003)
  4. Kim JO, Environ. Eng. Res., 2, 9 (1997)
  5. Abumaizar RJ, Kocher W, Smith EH, J. Hazard. Mater., 60, 111 (1998)
  6. Moe WM, Irvine RL, Wat. Res., 35, 1407 (2001)
  7. Moe WM, Irvine RL, Wat. Sci. Technol., 43, 35 (2001)
  8. Amarsanaa A, Shin WS, Choi JH, Choi SJ, Env. Eng. Res., 11, 1 (2006)
  9. Amarsanaa A, Shin WS, Choi JH, Choi SJ, J. Environ. Sci., 15, 513 (2006)
  10. Delhomenie M, Bibeau L, Bredin N, Roy S, Broussau S, Brzezinski R, Kugelmass JL, Heitz M, Adv. Environ. Res., 6, 239 (2002)
  11. Kinney KA, Wright W, Chang DP, Schroeder ED, Biodegradation of vapor phase contaminants, in Bioremediation: principles and practice, Sikdar SK, Irvine RL Eds., Technomic Press, Lancaster, PA, USA (1997)
  12. Ergas SJ, Schroeder ED, Chang DPY, Morton RL, Water Environ. Res., 67, 816 (1995)
  13. Kim SH, Oh KJ, Moon JH, Kim D, J. Micorbiol. Biotechnol., 10, 419 (2000)
  14. Chung Y, Huang C, Tseng C, Chemosphere, 43, 1043 (2001)
  15. Kim HS, Kim YJ, Chung JS, Xie Q, J. Air Waste Manage. Assoc., 52, 1389 (2002)
  16. Kim HS, Xie Q, Kim YJ, Chung JS, Environ. Technol., 23, 839 (2002)
  17. Liu YH, Quan X, Sun YM, Chen JW, Xue DM, Chung JS, J. Hazard. Mater., 95(1-2), 199 (2002)
  18. Acuna ME, Villanueva C, Cardenas B, Christen P, Revah S, Proc. Biochem., 38, 7 (2002)
  19. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101 (2002)
  20. Malhautier L, Gracian C, Roux J, Fanlo J, Cloirec PL, Chemosphere, 50, 145 (2003)
  21. Zilli M, Palazzi E, Sene L, Converti A, Borghi MD, Process Biochem., 37, 423 (2003)
  22. Lim KH, Park SW, Korean J. Chem. Eng., 21(6), 1161 (2004)
  23. Lim KH, Korean J. Chem. Eng., 22(2), 228 (2005)
  24. Park SJ, Cho KS, Hirai M, Shoda M, J. Ferment. Bioeng., 76, 55 (1993)
  25. Wani AH, Branion RMR, Lau AK, J. Hazard. Mater., 60, 287 (1998)
  26. Chung Y, Huang C, Tseng C, Pan JR, Chemosphere, 41, 329 (2000)
  27. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39, 165 (2003)
  28. Shojaosadati SA, Elyasi S, Resour. Conserv. Recycl., 27, 139 (1999)
  29. Busca G, Pistarino C, J. Loss Prevent Proc., 16, 157 (2003)
  30. Korean Ministry of Environment, Permissible air pollutant emission standards, Korean Ministry of Environment Printing Office: Seoul, Republic of Korea (2005)
  31. Neal AB, Loehr RC, Waste Manage., 20, 59 (2000)
  32. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25 (2000)
  33. Hirai M, Kamamoto M, Yani M, Shoda M, J. Biosci. Bioeng., 91(4), 396 (2001)
  34. Elias A, Barona A, Arreguy A, Rios J, Aranguiz I, Penas J, Process. Biochem., 37, 813 (2002)
  35. Shinabe K, Oketani S, Ochi T, Kanchanatawee S, Matsumura M, Biochem. Eng. J., 5, 209 (2002)
  36. Yoon IK, Kim CN, Park CH, Korean J. Chem. Eng., 19(6), 954 (2002)
  37. Delhomenie MC, Bibeau L, Gendron J, Brzezinski R, Heitz M, Chem. Eng. J., 94(3), 211 (2003)
  38. Row R, Toff R, Waide J, Appl. Environ. Microbiol., 33, 675 (1977)
  39. Schmidt WL, Belser LW, Autotrophic nitrifying bacteria, in Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties (Soil Science Society of America Book, No 5), Weaver RW, Angle S, Bottomley P, Bezdiecek D, Smith S, Tabatabai A, Wollum A, Mickelson SH, Bigham JM Eds., 2nd ed., Soil Science Society of America, Madison, WI, USA, pp. 159-197 (1994)
  40. Edwards VH, Biotechnol. Bioeng., 7, 679 (1970)
  41. Zarook SM, Shaikh AA, Ansar Z, Baltzis BC, Chem. Eng. Sci., 52(21-22), 4135 (1997)
  42. Shinabe K, Oketani S, Ochi T, Matsumura M, J. Ferment. Bioeng., 80(6), 592 (1995)
  43. Cesario MT, Beverloo WA, Tramper J, Beeftink HH, Enzyme Microb. Technol., 21(8), 578 (1997)
  44. Kang YT, Nagano T, Kashiwagi T, Int. J. Refrig., 25, 878 (2002)
  45. Terasaka K, Oka J, Tsuge H, Chem. Eng. Sci., 57(18), 3757 (2002)