Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.1, 87-93, February, 2009
담지체를 달리한 오존/촉매 AOP공정에서 디클로로아세트산의 제거 특성
Removal Characteristics of Dichloroacetic Acid at Different Catalyst Media with Advanced Oxidation Process Using Ozone/Catalyst
E-mail:
초록
팔라듐 금속을 활성탄과 알루미나에 담지시켜 Pd/AC (Pd/활성탄), Pd/AO (Pd/알루미나) 촉매를 제조하고, 오존/촉매공정에 적용하여 담지체의 종류에 따른 촉매 특성을 비교하였다. 담지체를 달리한 촉매 일정량을 오존포화수에 투입하고 오존분해능을 비교해 본 결과, 담지체의 종류에 따른 효율의 변화는 없었다. 오존단독공정과 Pd/AC, Pd/AO 촉매를 이용한 오존/촉매공정에서 dichloroacetic acid (DCAA)의 분해율 및 산화특성(TOC, CODCr)을 비교해 본 결과, 오존/촉매공정의 제거효율이 높았으며, 담지체에 따른 특성변화는 거의 없었다. DCAA 농도를 일정하게 하고 오존공급량을 변화시켜 제거율을 확인한 결과, 어느 수준까지는 오존공급량 증가에 따라 제거율이 상승하였지만, 1.0 L/min 이상의
오존공급량에서는 공급량에 비례하여 제거율이 상승하지 않았다. 이러한 원인은 DCAA의 완전산화에 의해 생성된 중탄산염과 분해과정에서 발생된 염소이온이 하이드록실 라디칼(·OH)의 스케빈저(scavenger)로 작용한 것 같았다.
Pd/activated carbon (Pd/AC) and Pd/alumina (Pd/AO) catalysts were prepared by the impregnation of palladium into activated carbon and alumina. The catalytic characteristics according to the kinds of support materials were compared. The decomposition efficiencies of ozone according to kinds of support materials are about the same when these were compared by adding 10 g of catalysts into the water saturated with ozone. The decomposition efficiencies and the oxidation characteristics (TOC, CODCr) of dichloroacetic acid were compared with the ozone only process and the catalytic ozonations using Pd/activated carbon and Pd/alumina catalysts. The decomposition efficiencies of dichloroacetic acid by catalytic ozonations were better than
the one by ozone only process, but there was slight difference of the one between Pd/activated carbon and Pd/alumina catalyst. The decomposition efficiency of dichloroacetic acid was increased with increasing ozone dose at a constant concentration of dichloroacetic acid, but the one was little increased with increasing ozone dose at more than 1.0 L/min of ozone dose. It
was seemed that the bicarbonate and the chloric ion formed throughout the decomposition of dichloroacetic acid acted as the scavenger of hydroxyl radical.
- Stefan MI, Bolton JR, Environ. Sci. Technol., 32, 1588 (1998)
- Prager L, Hartmann E, J. Photochem. Photobio. A, 138, 177 (2001)
- Park JD, Suh JH, Lee HS, J. Korean Soc. Environ. Eng., 17, 1108 (2005)
- Glaze WH, Kang JW, Chapin DH, Ozone Sci. & Eng., 9, 335 (1987)
- Park JD, Suh JH, Lee HS, J. the Environ. Sci., 15, 193 (2006)
- Baek YS, Park SW, Kim HJ, Moon SK, J. Korean Ind. Eng. Chem., 6(6), 1029 (1995)
- Clesceri LS, Greenberg AE, Eaton AD, Standard methods for the examination of water and wastewater, 20th ed., Water Environment Federation, Washington DC, 397, (1998)
- Staehelin J, Hoigne J, Environ. Sci. Technol., 16, 676 (1982)
- Song SJ, Oh BS, Na SJ, Lee ET, Kang JW, J. Korean Soc. on Water Advanced, 20, 176 (2004)
- Dorfman LM, Adams GE, Reactivity of the hydroxyl radical in aqueous solutions, NSRDS-NBS-46, U.S Goverment Printing Office, Washington, 46 (1973)
- Song SJ, Oh BS, Kim KS, Na SJ, Lee ET, Kang JW, J. Korean Soc. Environ. Eng., 26, 52 (2004)
- Adams CD, Cozzens RA, Kim BJ, Wat. Res., 31, 2655 (1997)