화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.1, 84-88, February, 2009
분무열분해 공정에 의해 합성된 Al이 치환된 LiMn2O4 분말의 특성
Properties of Al Doped LiMn2O4 Powders Prepared by Spray Pyrolysis Process
E-mail:
초록
Al이 치환된 LiMn2O4 미세 분말을 구연산과 에틸렌 글리콜이 첨가된 분무용액으로부터 분무열분해 공정에 의해 합성하였다. 구형의 형상, 다공성의 구조 및 마이크론 크기를 가지는 전구체 분말들은 800 ℃ 이상의 후열처리 온도에서 마이크론 크기 및 균일한 형태를 가지는 LiMn11/6Al1/6O4 분말들로 전환되었다. 후열처리 온도가 700 ℃ 일 때 LiMn11/6Al1/6O4 분말은 94 mAh/g의 낮은 초기 방전 용량을 가졌다. 후열처리 온도가 750 ℃에서 1,000 ℃로 증가함에 따라 LiMn11/6Al1/6O2 분말의 초기 방전 용량은 103 mAh/g에서 117 mAh/g로 변화하였으며, 후열처리 온도 750 ℃에서 최대 초기 방전용량을 가졌다. 반면에 후열처리 온도 900 ℃에서 얻어진 LiMn11/6Al1/6O2 분말들이 좋은 사이클 특성을 가졌다. 전류밀도 0.1 C에서 70 사이클 충방전 후에 LiMn11/6Al1/6O4 분말들의 방전 용량은 107 mAh/g에서 100 mAh/g으로 감소하였고 93%의 사이클 효율을 유지하였다.
Al doped LiMn2O4 cathode powders with fine size were synthesized by an ultrasonic spray pyrolysis method from the spray solution with citric acid and ethylene glycol. The as-prepared powders with spherical shape, porous structure and micron size turned into LiMn11/6Al1/6O4 powders with micron size and regular morphology after post-treatment above 800 ℃. The LiMn11/6Al1/6O4 powders had low initial discharge capacity of 94 mAh/g at a posttreatment temperature of 700 ℃. As the post-temperature increased from 750 ℃ to 1,000 ℃, the initial discharge capacities of the LiMn11/6Al1/6O4 powders changed from 103 to 117 mAh/g. The LiMn11/6Al1/6O4 powders had the maximum discharge capacity at a post-treatment temperature of 750 ℃. However, the LiMn11/6Al1/6O4 powders post-treated at a temperature of 900 ℃ had the good cycle properties. The discharge capacities of the LiMn11/6Al1/6O4 powders dropped from 107 to 100 mAh/g (93% capacity retention) by the 70th cycle at a current density of 0.1 C.
  1. Mizushima K, Jones PC, Wiseman PJ, Mater. Res. Bull., 15, 783 (1980)
  2. Ohzuku T, Komori H, Nagayama M, Sawai K, Hirai T, Chem. Express, 6, 161 (1991)
  3. Kang SH, Goodenough JB, J. Electrochem. Soc., 147(10), 3621 (2000)
  4. Padhi AK, Nanjundaswamy KS, Goodenough JB, J. Electrochem. Soc., 144(4), 1188 (1997)
  5. Gummow RJ, Dekock A, Thackeray MM, Solid State Ion., 69(1), 59 (1994)
  6. Lanz M, Kormann C, Steininger H, Heil G, Haas O, Novak P, J. Electrochem. Soc., 147(11), 3997 (2000)
  7. Yamada A, Tanaka M, Mater. Res. Bull., 30(6), 715 (1995)
  8. Tarascon JM, Wang E, Shokoohi FK, McKinnon WR, Colson S, J. Electrochem. Soc., 138, 2859 (1991)
  9. Kakuda T, Uematsu K, Toda K, Sato M, J. Power Sources, 167(2), 499 (2007)
  10. Bang HJ, Donepudi VS, Prakash J, Electrochim. Acta, 48(4), 443 (2002)
  11. Fu YP, Su YH, Lin CH, Solid State Ion., 166(1-2), 137 (2004)
  12. Aikiyo H, Nakane K, Ogata N, Ogihara T, J. Ceram. Soc. Jpn., 109, 506 (2001)
  13. Huang H, Chen CH, Perego RC, Kelder EM, Chen L, Schoonman J, Weydanz WJ, Nielsen DW, Solid State Ion., 127(1-2), 31 (2000)
  14. Matsuda K, Taniguchi I, J. Power Sources, 132(1-2), 156 (2004)
  15. Chen CH, Buysman AA, Kelder EM, Schoonman J, Solid State Ion., 80(1-2), 1 (1995)
  16. Kawamura T, Makidera M, Okada S, Koga K, Miura N, Yamaki J, J. Power Sources, 146(1-2), 27 (2005)
  17. Gu YX, Chen DR, Jiao ML, J. Phys. Chem. B, 109(38), 17901 (2005)
  18. Park SH, Sun YK, Electrochim. Acta, 50, 434 (2004)
  19. Ju SH, Jang HC, Kang YC, Electrochim. Acta, 52(25), 7286 (2007)
  20. Lee YS, Kumada N, Yoshio M, J. Power Sources, 96(2), 376 (2001)