화학공학소재연구정보센터
Macromolecular Research, Vol.17, No.3, 174-180, March, 2009
Specific Binding of Streptavidin onto the Nonbiofouling Titanium/Titanium Oxide Surface through Surface-Initiated, Atom Transfer Radical Polymerization and Bioconjugation of Biotin
E-mail:,
Chemical modification of titanium/titanium oxide (Ti/TiO2) substrates has recently gained a great deal of attention because of the applications of Ti/TiO2-based materials to biomedical areas. The reported modification methods generally involve passive coating of Ti/TiO2 substrates with protein-resistant materials, and poly(ethylene glycol) (PEG) has proven advantageous for bestowing a nonbiofouling property on the surface of Ti/TiO2. However, the wider applications of Ti/TiO2-based materials to biomedical areas will require the introduction of biologically active moieties onto Ti/TiO2, in addition to nonbiofouling property. In this work, we therefore utilized surface-initiated polymerization to coat the Ti/TiO2 substrates with polymers presenting the nonbiofouling PEG moiety and subsequently conjugated biologically active compounds to the PEG-presenting, polymeric films. Specifically, a Ti/TiO2 surface was chemically modified to present an initiator for atom transfer radical polymerization, and poly(ethylene glycol) methacrylate (PEGMA) was polymerized from the surface. After activation of hydroxyl groups of poly(PEGMA) (pPEGMA) with N,N'-disuccinimidyl carbonate, biotin, a model compound, was conjugated to the pPEGMA films. The reactions were confirmed by infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle goniometry, and ellipsometry. The biospecific binding of target proteins was also utilized to generate micropatterns of proteins on the Ti/TiO2 surface.
  1. Brunette DM, Tengvall P, Textor M, Thomsen P, Titanium in Medicine, Springer-Verlag, New York (2007)
  2. Boyan BD, Hummert TW, Dean DD, Schwartz Z, Biomaterials, 17, 137 (1996)
  3. Leonard EF, Turitto VT, Vroman L, Blood in Contact with Natural and Artificial Surfaces, New York Academy of Sciences, New York, 1987, Vol. 516, p 688
  4. McPherson TB, Shim HS, Park K, J. Biomed. Mater. Res., 38, 289 (1997)
  5. Ratner BD, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer-Verlag, Berlin (2001)
  6. Dalsin JL, Hu BH, Lee BP, Messersmith PB, J. Am. Chem. Soc., 125(14), 4253 (2003)
  7. Fadeev AY, McCarthy TJ, J. Am. Chem. Soc., 121(51), 12184 (1999)
  8. Gawalt ES, Avaltroni MJ, Koch N, Schwartz J, Langmuir, 17(19), 5736 (2001)
  9. Xiao SJ, Textor M, Spencer ND, Sigrist H, Langmuir, 14(19), 5507 (1998)
  10. Tosatti S, Michel R, Textor M, Spencer ND, Langmuir, 18(9), 3537 (2002)
  11. Adden N, Gamble LJ, Castner DG, Hoffmann A, Gross G, Menzel H, Langmuir, 22(19), 8197 (2006)
  12. Gnauck M, Jaehne E, Blaettler T, Tosatti S, Textor M, Adler HJP, Langmuir, 23(2), 377 (2007)
  13. Tosatti S, De Paul SM, Askendal A, VandeVondele S, Hubbell JA, Tengvall P, Textor M, Biomaterials, 24, 4949 (2003)
  14. Pelsoczi I, Turzo K, Gergely C, Fazekas A, Dekany I, Cuisinier F, Biomacromolecules, 6(6), 3345 (2005)
  15. Rossetti FF, Bally M, Michel R, Textor M, Reviakine I, Langmuir, 21(14), 6443 (2005)
  16. Rossetti FF, Textor M, Reviakine I, Langmuir, 22(8), 3467 (2006)
  17. Fan XW, Lin LJ, Dalsin JL, Messersmith PB, J. Am. Chem. Soc., 127(45), 15843 (2005)
  18. Fan XW, Lin LJ, Messersmith PB, Biomacromolecules, 7(8), 2443 (2006)
  19. Zoulalian V, Monge S, Zurcher S, Textor M, Robin JJ, Tosatti S, J. Phys. Chem. B, 110(51), 25603 (2006)
  20. Lee BS, Lee JK, Kim WJ, Jung YH, Sim SJ, Lee J, Choi IS, Biomacromolecules, 8(2), 744 (2007)
  21. Lee BS, Chi YS, Lee KB, Kim YG, Choi IS, Biomacromolecules, 8(12), 3922 (2007)
  22. Kim YP, Lee BS, Kim E, Choi IS, Moon DW, Lee TG, Kim HS, Anal. Chem., 80, 5094 (2008)
  23. Chi YS, Byon HR, Lee BS, Kong B, Choi HC, Choi IS, Adv. Funct. Mater., 18, 3395 (2008)
  24. It has to be noted that a very similar approach to the functionalization of Ti/TiO2 was reported during the preparation of our manuscript. They used a chlorosilane-based initiator, 11-(2-bromo-2-methyl)propionyloxy)undecenyldimethylchlorosilane, and activated the hydroxyl group with 4-nitrophenyl chloroformate: Raynor JE, Petrie TA, Garcia AJ, Collard DM, Adv. Mater., 19, 1724 (2007). In this work, we used a catechol-based initiator and activated the hydroxyl group with N,N'-disuccinimidyl carbonate by adopting our previously reported method.
  25. Gawalt ES, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Midwood KS, Schwarzbauer JE, Schwartz J, Langmuir, 19(1), 200 (2003)
  26. Kingshott P, Thissen H, Griesser HJ, Biomaterials, 23, 2043 (2002)
  27. Son YK, Kim JH, Jeon YS, Chung DJ, Macromol. Res., 15(6), 527 (2007)
  28. Kim SY, Cho SH, Lee YM, Chu LY, Macromol. Res., 15(7), 646 (2007)
  29. Kim WJ, Kim SW, Macromol. Res., 15(2), 100 (2007)
  30. Harris JM, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Perss, New York (1992)
  31. Kim JB, Bruening ML, Baker GL, J. Am. Chem. Soc., 122(31), 7616 (2000)
  32. Lee YW, Kang SM, Yoon KR, Chi YS, Choi IS, Hong SP, Yu BC, Paik HJ, Yun WS, Macromol. Res., 13(4), 356 (2005)
  33. Hasneen A, Kim SJ, Paik HJ, Macromol. Res., 15(6), 541 (2007)
  34. Martin ST, Kesselman JM, Park DS, Lewis NS, Hoffmann MR, Environ. Sci. Technol., 30, 2535 (1996)
  35. Lahann J, Balcells M, Rodon T, Lee J, Choi IS, Jensen KF, Langer R, Langmuir, 18(9), 3632 (2002)
  36. Teare DOH, Schofield WCE, Garrod RP, Badyal JPS, J. Phys. Chem. B, 109(44), 20923 (2005)
  37. Jon SY, Seong JH, Khademhosseini A, Tran TNT, Laibinis PE, Langer R, Langmuir, 19(24), 9989 (2003)