화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.1, 72-76, January, 2009
Thermogravimetric study on pyrolysis of biomass with Cu/Al2O3 catalysts
E-mail:
The Cu/Al2O3 catalysts of three different compositions (10, 20 and 30 wt.% Cu loading), have been investigated with regard to their catalytic effects on pyrolysis of paper biomass species (up to 800 ℃) by thermogravimetric analysis (TGA) experiments. The results show that catalysts made devolatilization at lower (below200 ℃) and middle temperature (200-400 ℃) regions in the pyrolysis of the biomass species, and the temperature reduction effects follow the order: 30 > 20 > 10 wt.% copper loading. Although the catalysts with 10 and 20 wt.% copper have shown almost similar activity, whereas dehydration reaction was enhanced almost 40% in the presence of 30 wt.% copper-loaded catalyst. At the same time, the amount of residue at theendof the reactionalso decreasedwithincrease inthe copper loading from10 to30 wt.%. At higher temperatures (above 400 ℃), the catalyst with greater copper loaded worked more nicely possibly due to the enhancement of the depolymerization reactionoverdehydration of cellulose in presence ofmore basic catalysts. The catalysts were characterized by using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM).XRDresults showthe formation of CuAl2O4 spinel and Cu2O phase in the catalysts.
  1. Vlaev LT, Markovska IG, Lyubchev LA, Thermochim. Acta, 406(1-2), 1 (2003)
  2. Zabaniotou AA, Kalogiannis G, Kappas E, Karabelas AJ, Biomass Bioenerg., 18(5), 411 (2000)
  3. Aclkgoz C, Onay O, Kockar OM, J. Anal. Appl. Pyrol., 71, 417 (2004)
  4. Orfao JJM, Antunes FJA, Figueiredo JL, Fuel, 78(3), 349 (1999)
  5. Montane D, Torne-Fernandez V, Fierro V, Chem. Eng. J., 106(1), 1 (2005)
  6. Muller-Hagedorn M, Bockhorn H, Krebs L, Muller U, J. Anal. Appl. Pyrol. 68-69 (2003) 231
  7. Borgund AE, Barth T, Org. Geochem., 30, 1517 (1999)
  8. Ates F, Putun AE, Putun E, Energy Conv. Manag., 46(3), 421 (2005)
  9. Williams PT, Nugranad N, Energy, 25(6), 493 (2000)
  10. Lippens BC, deBoer JH, J. Catal., 4, 319 (1965)
  11. Cullity BD, Elements of X-Ray Diffraction, 2nd Edn., Addison-Wesley, Reading, MA, 1978, p. 281
  12. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, 2nd Edn., Academic Press, New York (1982)
  13. Medina AF, Salagre P, Correig X, Sueiras JE, Chem. Mater., 11, 939 (1999)
  14. Dumas JM, Geron C, Keribii A, Barbier J, Appl. Catal., 47, L9 (1989)
  15. Freidman RM, Freeman JJ, Lyte FW, J. Catal., 55, 10 (1978)
  16. Sosa Vazquez M, Reyes Rojas A, Collins-Martınez V, Lopez Ortiz A, Catal. Today 107-108 (2005) 831
  17. Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo JN, Domen K, Hosono H, Kawazoe H, Tanaka A, Chem. Commun., 20, 301 (1998)
  18. Jernigan GG, Somorjai GA, J. Catal., 147(2), 567 (1994)
  19. Stray G, Cassidy PJ, Jackson WR, Larkins FP, Sutton JF, Fuel, 65, 1524 (1986)
  20. Kilzer FJ, Broido A, Pyrodynamics, 2, 151 (1965)
  21. Tang MM, Bacon R, Carbon, 2, 211 (1964)
  22. Kashiwagi T, Nambu H, Combust. Flame, 88, 345 (1992)
  23. Martin D, Duprez D, J. Phys. Chem., 100(22), 9429 (1996)
  24. Patai S, Halpern Y, Isr. J. Chem., 23, 419 (1968)
  25. Scheirs J, Camino G, Tumiatti W, Eur. Polym. J., 37, 933 (2001)
  26. Chang HF, Yang CF, Ind. Eng. Chem. Res., 36(6), 2080 (1997)
  27. ADJAYE JD, BAKHSHI NN, Fuel Process. Technol., 45(3), 161 (1995)
  28. ADJAYE JD, BAKHSHI NN, Fuel Process. Technol., 45(3), 185 (1995)