화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.2, 213-217, April, 2009
폐수처리를 위한 미생물연료전지의 전기생산 특성
Characteristics of Electricity Generation by Microbial Fuel Cell for Wastewater Treatment
E-mail:
초록
폐수처리와 동시에 전기를 생산할 수 있는 새로운 대체 에너지 기술로 주목받고 있는 미생물 연료전지(microbial fuel cell, MFC)는 혐기성 조건의 산화전극(anode)에서 미생물에 의한 촉매작용을 통해 유기물질을 분해하면서 화학에너지를 전기 에너지로 전환시키는 장치이다. 본 연구에서는 MFC의 성능을 파악하기 위하여 도시하수를 사용하여 폐수처리 효율과 전기생산 특성을 평가하였다. 도시하수에 탄소원으로서 acetate를 주입하였을 때 COD 제거율은 75.7%에서 88.2%로 증가하였으며 전압은 0.22 V에서 0.4 V까지 급격하게 상승하였다. 다양한 외부저항 하에서 전기생산에 미치는 산화전극과 환원 전극(cathode) 사이의 전극 거리에 대한 영향 및 산화전극의 표면적에 대한 영향을 조사하였다. 최고 전력밀도는 610mW/m2이었으며, 전극간 거리가 가깝고 산화전극의 표면적이 작을수록 전기발생에 효과적임을 알 수 있었다.
Microbial fuel cells (MFCs) have been known as a new alternative energy conversion technology for treating wastewater and producing electricity simultaneously. A MFC converts the chemical energy of the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions. To examine the performance of MFC, in this work, the characteristics of the efficiency of wastewater treatment and generation of electricity was evaluated for sewage. When acetate as a carbon source was added into the sewage, the removal efficiency of COD was increased from 75.7% to 88.2% and the voltage was increased significantly from 0.22 V to 0.4 V. The influence of distance between anode and cathode was examined and the effect of the surface area of anode was investigated under the various external resistances. It was found that the maximum power density was 610 mW/m2 and power generation was effective when the distance between the electrodes was shorter and the surface area of the anode was smaller.
  1. Logan BE, Regan JM, Trends Microbiol., 14, 512 (2006)
  2. Rabaey K, Verstraete W, Trends Biotech., 23, 291 (2005)
  3. Bond DR, Holmes DE, Tender LM, Lovley DR, Science, 295, 483 (2002)
  4. Oh S, Min B, Logan BE, Environ. Sci. Tech., 38, 4900 (2004)
  5. Liu H, Ramnarayan R, Logan BE, Environ. Sci. Tech., 38, 2281 (2004)
  6. He W, Minter SD, Angenent LT, Environ. Sci. Tech., 39, 5262 (2005)
  7. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington DC (1998)
  8. Min B, Logan BE, Environ. Sci. Tech., 38, 5809 (2004)
  9. Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ, Biosen. Bioelectron., 18, 327 (2003)
  10. Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K, Environ. Sci. Tech., 40, 5181 (2006)
  11. Lovley DR, Nat. Rev. Microbiol., 4, 497 (2006)
  12. Bond DR, Lovley DR, Appl. Environ. Microbiol., 69, 1548 (2003)
  13. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR, Appl. Environ. Microbiol., 72, 7345 (2006)
  14. Kim JK, Park KJ, Cho KS, Nam SW, Park TJ, Bajpai R, Bioresour. Technol., 96(17), 1897 (2005)
  15. Jang JK, Pham TH, Chang IS, Moon KH, Cho KS, Kim BH, Process Biochem., 39, 1007 (2004)
  16. Logan BE, Murano C, Scott K, Gray ND, Head IM, Water Res., 39, 942 (2005)