화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.3, 806-811, May, 2009
Excess molar volumes and molar enthalpies in the binary mixtures of {x1CH3CHClCH2Cl+x2CH3(CH2)n-1OH} (n=1 to 4) at T=298.15K
E-mail:
The excess molar volumes V^(E)m and excess molar enthalpies H^(E)m at T=298.15 K and atmospheric pressure for the binary systems {x1CH3CHClCH2Cl+x2CH3(CH2)n-1OH} (n=1 to 4) have been determined from density measurements by using a digital vibrating-tube densimeter and an isothermal calorimeter with flow-mixing cell, respectively. The 1-alkanols are methanol, ethanol, 1-propanol and 1-butanol. The V^(E)m values of the binary mixtures increase with chain length of the 1-alkanols, resulting in entire negative V^(E)m values for methanol, ‘S-shaped’ for ethanol, being nega- tive at low and positive at high mole fraction of 1,2-dichloropropane, and entire positive V^(E)m values for both 1-propanol and 1-butanol. The H^(E)m values for all systems show an endothermic effect (positive values), which exhibits a regular increase in magnitude when the number of -CH2- group in 1-alkanols is progressively increased and maximum values of H^(E)m varying from 741 J·mol^(-1) (methanol) to 1,249 J·mol^(-1) (1-butanol) around x1=0.63-0.72. The experimental results of both H^(E)m and V^(E)m were fitted to Redlich-Kister equation to correlate the composition dependence. The experimental H^(E)m data were also used to test the suitability of the Wilson, NRTL, and UNIQUAC models. The correlation of excess enthalpy data in these binary systems using UNIQUAC model provides the most appropriate results except for the system containing methanol.
  1. Kim Y, Kim M, Korean Chem. Eng. Res., 42(4), 426 (2004)
  2. Kim JW, Kim MG, Korean Chem. Eng. Res., 44, 44 (2006)
  3. Sen D, Kim MG, Thermochim. Acta., 471, 20 (2008)
  4. O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (Eds.), Merck index, 14th ed., Merck Research Laboratories, NJ (2006)
  5. Santana P, Balseiro J, Salgado J, Jimenez E, Legido JL, Romani L, Andrade MIP, J. Chem. Thermodyn., 31(10), 1329 (1999)
  6. Santana P, Balseiro J, Jimenez E, Franjo C, Legido JL, Romani L, Andrade MIP, J. Chem. Thermodyn., 31(4), 547 (1999)
  7. Medina C, Fernandez J, Legido JL, Paz-Andrade MI, J. Chem. Eng. Data, 47, 411 (2002)
  8. Lafuente C, Pardo J, Rodriguez V, Royo FM, Urieta JS, J. Chem. Eng. Data, 38, 554 (1993)
  9. Morrison RT, Boyd RN, Organic chemistry, 6th ed., Prentice Hall, NJ (1992)
  10. Riddick JA, Bunger WB, Sakano TK (Eds.), Organic solvents, 4th ed., Wiley-Interscience, NY (1986)
  11. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
  12. Wilson GM, J. Am. Chem. Soc., 86, 127 (1964)
  13. Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
  14. Abrams DS, Prausnitz JM, AIChE J., 21, 116 (1975)
  15. Daubert TE, Danner RP, Sibul HM, Stebbins CC, Physical and thermodynamic properties of pure chemicals: data compilation, part 2, Taylor and Francis, Washington, D.C. (1995)
  16. Poling BE, Prausnitz JM, O’Connell JP, The properties of gases and liquids, 5th ed., McGraw-Hill, NY (2001)
  17. Kim MG, Park SJ, Hwang IC, Korean J. Chem. Eng., 25(5), 1160 (2008)
  18. Tanaka R, D’Arcy PJ, Benson GC, Thermochim. Acta., 11, 163 (1975)
  19. Chand A, Fenby DV, J. Chem. Thermodyn., 10, 997 (1978)
  20. Costigan MJ, Hodges LJ, Marsh KN, Stokes RH, Tuxford CW, Aust. J. Chem., 33, 2103 (1980)
  21. Kirkup L, Data analysis with excel, Cambridge University Press, Cambridge (2002)
  22. Ott JB, Sipowska JT, J. Chem. Eng. Data, 41(5), 987 (1996)
  23. Amigo A, Legido JL, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 21, 1207 (1989)
  24. Amigo A, Legido JL, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 22, 633 (1990)
  25. Amigo A, Legido JL, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 22, 1059 (1990)
  26. Amigo A, Bravo R, Paz-Andrade MI, J. Chem. Thermodyn., 23, 679 (1991)