Polymer(Korea), Vol.33, No.3, 224-229, May, 2009
가교체 종류에 따른 Semi-IPN Poly(phenylene oxide) 블렌드와 BaTiO3 복합재료의 유전특성
Dielectric Properties of Semi-IPN Poly(phenylene oxide) Blend/BaTiO3 Composites with Type of Cross-linker
E-mail:
초록
가교체의 종류에 따른 semi-IPN(interpenetrating polymer network) poly(phenylene oxide)(PPO) 블
렌드와 BaTiO3(BT) 복합재료의 유전특성을 조사하였다. PPO와 BT를 톨루엔에 분산하고 MEK 용매에 석출하여 얻어진 precursor PPO 복합재료에, 가교체와 과산화물을 용융혼합하는 방법으로 복합재료를 제조하였다. Precursor PPO 복합재료는 PPO와 BT를 단순히 용융혼합한 복합재료보다 높은 유전율을 나타냈으며 대수혼합법칙에 의한 이론값과도 일치하였다. 가교체로서 triallyl isocyanurate의 도입에 의해 PPO 수지의 배향분극이 감소하여 유전율과 유전손실 모두 크게 감소하였다. 4,4′-(1,3-phenylene diisopropylidene)bisaniline (Bisaniline)을 2,2-bis(4-cyanatophenyl)propane(CPP)와 혼합하여 가교하였을 경우에는 Bisaniline의 아민기에 의해 유전율과 손실이 증가하였으나, 치밀한 수지 조직과 충전제 계면상태를 관찰할 수 있었으며, 이것으로부터 굴곡강도와 탄성률이 향상된다는 것을 설명할 수 있었다.
The dielectric properties of semi-IPN poly(phenylene oxide)(PPO) blend/BaTiO3(BT) composites
are investigated. The composites are fabricated via melt-mixing of crosslinker and peroxide in
precursor PPO composite obtained by precipitating the suspension consisted of PPO, BT and toluene into methylethyl ketone, poor solvent of PPO. The permittivity of the precursor PPO composites shows higher value than that of integral-blended PPO composites by extruder and coincides with the theoretical value calculated by logarithmic rule of mixture. The blend of PPO and cross-linked triallyl isocyanurate is most effective for lowering the permittivity and loss tangent owing to the suppression of the orientation polarization of matrix. In contrast, 4,4′-(1,3-phenylene diisopropylidene) bisaniline, which has amine unit in its structure, increases the permittivity as well as loss tangent of the composite, but it has the ability to densify the matrix resin and the interfacial adhesion between the matrix and filler to improves flexural strength and modulus.
Keywords:semi-interpenetrating polymer network;poly(phenylene oxide) blend;BaTiO3;dielectric properties;cross-linker;polarization.
- White DM, Comprehensive Polymer Science, Allen SG, Bevington JC, Editors, New York, Pergamon Press, Chap 5, Vol 5 (1989)
- Kricheldorf HR, Handbook of Polymer Science, Dekker, New York, p 545 (1992)
- Krijgsman J, Biemond GJE, Gaymans RJ, Polymer, 46(19), 8250 (2005)
- Poncet S, Boiteux G, Pascault JP, Sautereau H, Seytre G, Rogozinski J, Kranbuehl D, Polymer, 40(24), 6811 (1999)
- Matsushita Electric Works Co. Ltd., Japanese Patent 238677 (2003)
- Hitachi Chemicals, Japanese Patent 224367 (2003)
- Mitsubishi Gas Chemical Co. Inc., Japanese Patent 252983 (2003)
- Kim DK, Park SD, Lee WS, Yoo MJ, Park SH, Lim JK, Kyoung JB, Polym.(Korea), 31(6), 474 (2007)
- Cruickshank D, J. Eur. Ceramic Soc., 21, 2621 (2001)
- Peng Z, Wang H, Yao X, Ceramics Int., 30, 1211 (2004)
- Almeida FL, Fechine PBA, Goes JC, Valente MA, Miranda MAR, Sombra ASB, Mater. Sci. Eng. B, 111, 113 (2004)
- Jigounov A, Sedlakova Z, Kripotou R, Pissis P, Nedbal J, Baldrian J, Ilavsky M, Polymer, 48(19), 5721 (2007)
- Yang CP, Su YY, J. Polym. Sci. Part A: Polym. Chem.42, 222, 2004
- Myung BY, Kim JS, Kim JJ, Yoon TH, J. Polym. Sci. A: Polym. Chem., 41(21), 3361 (2003)
- Ichiro O, DIC Tech. Rev., 7, 1 (2001)
- Mizuno H, Koubunshi, 52, 571 (2003)
- Kim TH, A Study on Nylon 6/BaTiO3 Composites of High Dielectric Constant, MS thesis, Korea University (2005)
- Baba F, Development of Polymer Materials for Microwave Applications(Japanese), CMC, Tokyo, p 94 (2005)
- Winter HH, Polym. Eng. Sci., 27, 1698 (1987)
- Lichtenecker K, Phys. Z, 10, 1005 (1908)
- Kao KC, Dielectric Phenomena in Solids, Elsevier Academic Press, New York, p 58 (2004)
- Current Trend IV of Polymer Materials for Electronic Components(Japanese), S. B. Research Co. Ltd., p 17 (2005)