화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.3, 243-247, May, 2009
Cellulose Diacetate의 열적 및 기계적 물성에 미치는 Zeolite 충전효과
Effect of Zeolite Filler on the Thermal and Mechanical Properties of Cellulose Diacetate
E-mail:
초록
셀룰로오스 디아세테이트(CDA)에 가소제로서 트리아세틴(TA)과 에폭시화된 콩기름(ESO)을 첨가하여 고속믹서에서 일차적으로 CDA를 가소화한 후, 여기에 천연 zeolite를 충전제로서 첨가하여 용융압출로 CDA/zeolite 복합체를 제조하였다. DMA 측정을 통하여 가소화한 CDA의 Tg는 106 ℃이며 여기에 zeolite를 50% 첨가한 복합체의 경우는 125 ℃의 Tg를 확인하였다. Zeolite의 함량이 10에서 50%까지 증가함에 따라 탄성률은 1.7 GPa에서 3.6 GPa로 2배 이상 증가하였으며, 인장강도는 62 MPa에서 조금 증가하다가 51 MPa로 감소하였고 파단신율도 10%로 증가하다가 3.2%로 감소하였다. 복합체의 SEM 이미지로부터 CDA와 zeolite의 상용성을 확인하였다. Zeolite의 함량이 증가할수록 더 효과적으로 zeolite가 초산기를 흡수하였다.
Cellulose diacetate (CDA) was plasticized with triacetine (TA) and epoxidized soybean oil (ESO) in a high speed mixer. Composites of plasticized CDA and zeolite were prepared by a melting process. The Tg value, 106 ℃ of the plasticized CDA was confirmed by DMA analysis. The Tg value of the CDA with 50% zeolite was 125 ℃. As the content of zeolite was increased from 10 to 50% the modulus of the composite was increased from 1.7to 3.6 GPa by two times over the plasticized CDA, and its tensile strength was increased to 62 MPa and then decreased down 51 MPa, and its elongation was increased to 10% and then decreased down 3.2%. In the SEM image, the compatibility between CDA and zeolite was observed. Increasing the amount of zeolite in the composites resulted in further enhancement of the CH3COOH absorption effects.
  1. Kester JJ, Fennema OR, Food Technology, 40, 47 (1986)
  2. Wurzburg OB, Editor, Modified Starches; Properties and Uses, CRC Press, Boca Raton, Florida (1987)
  3. Brandt L, Cellulose ethers, in “Ullmann's Encyclopedia of Industrial Chemistry”, Campbell FT, Pfefferkorn R, Rounsaville JF, Editors, VCH Verlagsgesellschaft, Weinheim, p 461 (1986)
  4. van der Burgt YEM, Bergsma J, Bleeker IP, Mijland PJHC, van der Kerk-van Hoof A, Kamerling JP, Vliegenthart JFG, Starch/Starke, 40, 52 (2000)
  5. Park SH, Kim YB, Lee DS, Polym.(Korea), 24(4), 477 (2000)
  6. Jun CL, J. Polym. Environ., 8, 33 (2000)
  7. Gattin R, Copinet A, Bertrand C, Couturier Y, J. Polym. Environ., 9, 11 (2002)
  8. Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M, Biomaterials, 24, 3247 (2003)
  9. Wu CS, Polym. Degrad. Stabil., 80, 127 (2003)
  10. Vaidya UR, Bhattacharya M, Zhang DM, Polymer, 36(6), 1179 (1995)
  11. Lee SH, Shiraishi N, J. Appl. Polym. Sci., 81, 243 (2000)
  12. Bumbu GG, Vasile C, Chitanu GC, Carpov A, Polym. Degrad. Stabil., 72, 99 (2001)
  13. Garlotta D, J. Polym. Environ., 9, 63 (2002)
  14. Kricheldorf HR, Chemosphere, 43, 49 (2001)
  15. Kiso Y, Kitao T, Nishimura K, J. Appl. Polym. Sci., 71(10), 1657 (1999)
  16. Pauly J, Allaart H, Rodriguez M, Streck R, Cancer Res., 55, 253 (1995)
  17. Kamide K, Okajima K, Kowsaka K, Matsui T, Polym. J., 19, 1405 (1987)
  18. Cho MS, Choi SH, Nam JD, Lee Y, Polym.(Korea), 28(6), 551 (2004)
  19. Kim YJ, Shin CH, Lee SI, Jang SH, Kim BS, Shin BY, J. Korean Ind. Eng. Chem., 11(3), 276 (2000)
  20. Sumita M, Shizuma T, Miyasaka K, Ishikawa K, J. Macromol. Sic. Part B; Phys., 22, 601 (1983)
  21. Sumita M, Tsukurmo T, Miyasaka K, Ishikawa K, J. Master. Sci., 18, 1758 (1983)
  22. Bala H, Fu W, Zhao J, Ding X, Jing Y, Yu K, Wang Z, Colloids Surf., 252, 129 (2005)
  23. Metin D, Tihminlioglu F, Balkose D, Ulku S, Composites Part A, 35, 23 (2004)
  24. Ozmihci F, Balkose D, Ulku S, J. Appl. Polym. Sci., 82(12), 2913 (2001)
  25. Lee SH, Lee SY, Lim HK, Nam JD, Kye H, Lee Y, Polym.(Korea), 30(3), 202 (2006)
  26. Lee S, Lee S, Lim H, Kye H, Lee Y, Polym.(Korea), 30(6), 532 (2006)
  27. Lim H, Kye H, Won S, Nam JD, Lee Y, Polym.(Korea), 32(2), 178 (2008)