화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.3, 285-289, June, 2009
Spirulina platensis NIES 39의 성장을 위한 최적배양조건
Optimum Culture Conditions for the Growth of Spirulina platensis NIES 39
E-mail:
초록
최근 지구온난화 및 식량문제에 대한 관심이 증대되면서 그 해결책으로 미세조류에 대한 많은 연구가 이루어지고 있다. 특히 광합성 미세조류 Spirulina platensis는 이산화탄소를 고정할 수 있으며, 영양적 가치가 우수하여 많은 관심을 받고 있다. 본 연구에서는 Spirulina platensis NIES 39의 대량 배양을 위한, 배양온도, 초기 pH, 조도, 탄소와 질소원의 농도 등의 요인에 대한 최적 조건을 확립하고자 하였다. 배양 온도 35 ℃에서 초기 pH 9.5, 조도 4500 lux에서 건조균체중량 2.10 g/L, 클로로필 함량 29.53 mg/L로 가장 우수한 결과를 나타내었으며, 이때의 탄소원과 질소원의 농도는 각각 16.8 g/L NaHCO3, 2.5 g/L NaNO3이었다.
Recently, as the interest in the accelerated global warming and the food shortage problem is increased, the concerns for microalgae as photosynthetic microorganisms are also increased. Specially, photosynthetic microalgae, Spriulina platensis have been an attractive source for CO2 gas fixations and for a vast array of valuable nutritious compounds. In this paper, to culture the microalgal Spirulina platensis NIES 39 in a batch culture with high mass, optimal conditions for the culture temperature, initial pH, light intensity and concentration of carbon and nitrogen, were tested. At the most favorable culture condition, 35 ℃, initial pH 9.5, 4500 lux and carbon and nitrogen concentration of 16.8 g/L NaHCO3 and 2.5 g/L NaNO3, the excellent yields of 2.10 g/L biomass and 29.53 mg/L chlorophyll were obtained.
  1. Schmeider SH, Science, 243, 771 (1989)
  2. Binaghi L, Borghi AD, Lodi A, Converti A, Borghi MD, Proc. Biochem., 38, 1241 (2003)
  3. Karube T, Takeuchi T, Barnes DJ, Adv. Biochem. Eng. Biotechnol., 46, 63 (1992)
  4. Hall DO, House JI, Energy Convers. Manag., 34, 889 (1993)
  5. Carlos J, Belen RC, Diego L, Xavier N, Aquaculture, 217, 179 (2003)
  6. Carlos J, Belen RC, Xavier N, Aquaculture, 221, 331 (2003)
  7. Oh HM, Kim JS, Lee SJ, Kor. J. of Environ. Biol., 16, 291 (1998)
  8. Kim TH, Sung KD, Lee JS, Lee JY, Oh SJ, Lee HY, Kor. J. Appl. Microbiol. Biotechnol., 25, 235 (1997)
  9. Jorge AVC, Giani AL, Daniel IPA, Guilherme MM, Roselini TK, World J. Microbial. Biotechnol., 16, 15 (2000)
  10. Tredici M, Zitelli GC, Biagiolini S, Materassi R, Bull. Inst. Oceanogr., 12, 89 (1993)
  11. Jeon SM, Kim IH, Ha JM, Lee JH, J. Korean Ind. Eng. Chem., 19(2), 145 (2008)
  12. Joo DS, Cho MG, Buchholz R, Lee EH, J. Korean Fish. Soc., 31, 409 (1998)
  13. Joo DS, Jung CK, Lee CH, Cho SY, J. Korean Fish. Soc., 33, 475 (2000)
  14. Kim YS, Park HI, Kim DK, Park DW, Korean J. Biotechnol. Bioeng., 18, 277 (2003)
  15. Rangel-Yagui CD, Danesi EDG, de Carvalho JCM, Sato S, Bioresour. Technol., 92(2), 133 (2004)
  16. Rippka R, Deruelles J, Waterbury JB, Herdman M, Roughan PG, J. Sci. Food Agric., 47, 295 (1989)
  17. Babu SC, Rajasekaran B, Food Policy, 9, 405 (1991)
  18. Becker EW, Vanattaraman LV, Biomass, 4, 105 (1984)
  19. Ciferri O, Microbiol. Rev., 47, 551 (1983)
  20. Mosulishvili LM, Kirkesali EI, Belokobylsky AI, Khizanishvili AI, Frontasyeva MV, Pavlov SS, Gundorina SF, J. Pharm. Biomed. Anal., 30, 87 (2002)
  21. Lu J, Yoshizaki G, Sakai K, Takeuchi T, Fish. Sci., 68, 51 (2002)
  22. Vonshak A, Biotechnol. Adv., 8, 709 (1990)
  23. Ogawa T, Terui G, J. Ferment. Technol., 48, 361 (1970)
  24. Susana FB, Nishijima T, Hata Y, Fukami K, Nippon Suisan Gakk., 57, 645 (1991)
  25. Tianfeng C, Wong YS, Zheng W, Phytochemistry, 67, 2424 (2006)
  26. Pelizer LH, Danesi EDG, Rangel CO, Sassano CEN, Carvalho JCM, Sato S, Moraes IO, J. Food Eng., 56, 371 (2003)
  27. Chen PC, Ph. D. Dissertation, Gottingen Univ., Germany (1979)
  28. Ogbonda KH, Aminigo RE, Abu GO, Bioresour. Technol., 98(11), 2207 (2007)
  29. Gudin C, Chaumont D, Biochem. Soc. Trans., 8, 471 (1980)
  30. Korea Patent 0622025 (2006)