화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.21, No.2, 135-141, June, 2009
Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes
E-mail:
Effect of activation energy and crystallization kinetics of polyethylenes (PEs) on the dynamics and stability has been investigated by changing rheological properties and crystallization rate in film casting process. The effect of changes of these properties has been shown using a typical example of short-chain branching (SCB) in linear polyethylenes. SCBs in linear polymers generally lead to the increase of the flow activation energy, and to the decrease of the crystallization rate, making polymer viscosity lower in the case of equivalent molecular weight. In general, the increment of the crystallinity of polymers under partially crystallized state helps to enhance the process stability by increasing tension, and lower fluid viscoelasticity possesses the stabilizing effect for linear polymers. It has been found that the fluid viscoelasticity plays a key role in the control of process stability than crystallization kinetics which critically depends on the cooling to stabilize the film casting process of short-chain branched polymers operated under the low aspect ratio condition.
  1. Anturkar NR, Co A, J. Non-Newtonian Fluid Mech., 28, 287 (1988)
  2. Bubeck RA, Mat. Sci. Eng. R, 39, 1 (2002)
  3. Chiu FC, Peng Y, Fu Q, J. Polym. Res., 9, 175 (2002)
  4. Iyengar VR, Co A, Chem. Eng. Sci., 51(9), 1417 (1996)
  5. Jung HW, Lee JS, Hyun JC, Korea-Aust. Rheol. J., 14(2), 57 (2002)
  6. Jung HW, Hyun JC, Instabilities in extensional deformation polymer processing, in Rheology Reviews edited by Binding DM & Walters K, British Society of Rheology. (2006)
  7. Kanai T, Campbell GA, Film Processing, Hanser publishers, Cincinnati. (1999)
  8. Kim JM, Lee JS, Shin DM, Jung HW, Hyun JC, J. Non-Newton. Fluid Mech., 132(1-3), 53 (2005)
  9. Kim YS, Chung CI, Lai SY, Hyun KS, J. Appl. Polym. Sci., 59(1), 125 (1996)
  10. KWON Y, LEONOV AV, J. Non-Newton. Fluid Mech., 58(1), 25 (1995)
  11. Lee JS, Jung HW, Song HS, Lee KY, Hyun JC, J. Non-Newton. Fluid Mech., 101(1-3), 43 (2001)
  12. Lee JS, Jung HW, Hyun JC, Korea-Aust. Rheol. J., 15(2), 91 (2003)
  13. Munstedt H, Kurzbeck S, Egersdorfer L, Rheol. Acta, 37(1), 21 (1998)
  14. Muslet IA, Kamal MR, J. Rheol., 48(3), 525 (2004)
  15. Park SJ, Larson RG, J. Rheol., 49(2), 523 (2005)
  16. Phan-Thien N, J. Rheol., 22, 259 (1978)
  17. Shin DM, Lee JS, Jung HW, Hyun JC, Korea-Aust. Rheol. J., 17(2), 63 (2005)
  18. Shin DM, Lee JS, Kim JM, Jung HW, Hyun JC, J. Rheol., 51(3), 393 (2007)
  19. Silagy D, Demay Y, Agassant JF, Polym. Eng. Sci., 36(21), 2614 (1996)
  20. Silagy D, Demay Y, Agassant JF, J. Non-Newton. Fluid Mech., 79(2-3), 563 (1998)
  21. Stadler FJ, Gabriel C, Munstedt H, Macromol. Chem. Phys., 208, 2449 (2007)
  22. Stadler FJ, Munstedt H, J. Rheol., 52, 697 (2008)
  23. Vega JF, Santamaria A, Munoz-Escalona A, Lafuente P, Macromolecules, 31(11), 3639 (1998)
  24. Wood-Adams P, Costeux S, Macromolecules, 34(18), 6281 (2001)
  25. Yeow YL, J. Fluids Mech., 66, 613 (1974)
  26. Zavinska O, Claracq J, Eijndhoven S, J. Non- Newtonian Fluid Mech., 151, 21 (2008)