Polymer(Korea), Vol.33, No.4, 347-352, July, 2009
전기영동 디스플레이용 대전 복합입자의 제조
Preparation of Charged Composite Particles for Electrophoretic Display
E-mail:
초록
전자종이 등 전기영동을 이용한 디스플레이 기술에 사용하기 위한 대전 입자를 유무기 복합 형태로 제조하였다. TiO2와 Co3O4를 core 입자로 사용하여 poly(methyl methacrylate)를 분산 중합으로 코팅하였다. 또한, 코팅 고분자에 charge moiety를 부여하여 TiO2 core 입자는 양전하의 복합입자로 Co3O4 core 입자는 음전하의 복합입자로 제조하였다. 제조된 대전입자는 중합 후 구형의 형태를 갖게 되었음을 전자현미경을 통하여 확인을 하였다. 대전 복합입자를 전기영동에 사용하기 위하여 전기영동 유체와 유사한 밀도를 갖도록 조절하였다. TiO2 입자의 밀도는 고분자 코팅 전후 4.02 g/cm3에서 1.44 g/cm3로 변화하였고, Co3O4 입자의 경우 입자의 밀도가 6.11 g/cm3 에서 1.49 g/cm3로 변화하였다. Urea, melamine, formaldehyde를 벽물질로 하여 흑백 입자를 각각 포함하는 microcapsule을 in-situ polymerization 방법으로 제조하였으며, 균일한 크기와 투명한 microcapsule이 제조되었음을 video 현미경을 통하여 확인하였다.
Charged organic-inorganic composite particles were prepared for the application to electrophoretic display technology such as electronic paper. TiO2 and Co3O4 particles were used for core particles and were coated with poly(methyl methacrylate) by dispersion polymerization. Composite particles were endowed with charge moiety for electrophoresis; positive charge for TiO2 and negative charge for Co3O4 composite particles. Scanning electron microscopic results revealed that the charged composite particles have spherical shape. Densities of the composite particles were controlled to be that of medium of electrophoresis. Density of TiO2 particle changed from 4.02 to 1.44 g/cm3 after the polymer coating, and that of Co3O4 particles changed from 6.11 to 1.49 g/cm3. Urea, melamine, and formaldehyde were used as wall materials for capsule, and microcapsule containing black or white particles inside were prepared by in-situ polymerization. Microcapsule showed the inspection by a video microscope
demonstrated the formation of uniform transparent capsules.
- Terry AA, Library Hi Tech., 19, 376 (2001)
- Sheridon NK, Richley EA, Mikkelsen JC, Tsuda D, Crowley JM, Oraha KA, Howard ME, Rodkin MA, Swidler R, Sprague R, J. the Society for Inofmation Display, 7, 141 (1999)
- Jo GR, Hoshino K, Kitamura T, Chem. Mater., 14, 664 (2002)
- Comisky B, Albert JD, Yoshizawa H, Jacobson J, Nature, 394, 253 (1998)
- Almog Y, Reich S, Levy M, Brit. Polym. J., 14, 131 (1982)
- Tseng CM, Lu YY, El-Aasser MS, Vanderhoff TW, J. Polym. Sci. Part A: Polym. Chem., 24, 2995 (1986)
- Ober CK, Lok KP, Hair ML, J. Polym. Sci., Polym. Lett. Ed., 23, 103 (1985)
- Barrett KEJ, Dispersion Polymerization in Organic Media, John Wiley & Sons, London, (1975)
- Croucher MD, Winnik MA, An Introduction to Polymer Colloids, Candau F, Ottewill RH, Editors, Kluwer Academic Publishers, Netherlands, p35 (1990)
- Kim SJ, Wu JP, J. Res. Inst. Ind. Technol., 20, 231 (2001)
- Tuncel A, Kahraman R, Piskin E, J. Appl. Polym. Sci., 50, 303 (1993)
- Lok KP, Ober CK, Can. J. Chem., 63, 209 (1985)
- Ober CK, Hair HL, J. Polym. Sci. Part A: Polym. Chem., 25, 1395 (1987)
- Ober CK, Lok KP, Macromolecules, 20, 268 (1987)
- Yoon JS, Jin HJ, Polym. Sci. Technol., 7(4), 412 (1996)
- Kim CA, Joung MJ, Ahn SD, Kim GH, Kang SY, You IK, Oh JY, Myoung HJ, Baek KH, Suh KS, Syn. Met., 151, 181 (2005)
- Jahromi S, Macromol. Chem. Phys., 200, 2230 (1999)
- Moon HC, Development of core Technology for Electrophoretic e-Paper Display, Dongguk Univ. (2008)
- Winnik MA, Croucher MD, Future Directions in Polymer Colloids, El-Aasser MS, Fitcn RM, Editors, NATO Ser. E. 138, p277 (1987)
- Spevacek J, Suchoparek M, Macromolecules, 30(7), 2178 (1997)
- Rose PI, “Gelatin”, in Encyclopedia of Polymer Science and Engineering, Mark HF, Bikales NM, Overberer CG, Menges G, John Wiley & Sons, New York, Vol 9, p488 (1987)